Loading…

SMRU-Net: skin disease image segmentation using channel-space separate attention with depthwise separable convolutions

Skin disease image segmentation faces two major challenges: the complex and varied lesion morphology and the presence of interfering image backgrounds. To address these difficulties in skin disease image segmentation, we propose a Residual U-Net architecture with Channel-Space Separate Attention bas...

Full description

Saved in:
Bibliographic Details
Published in:Pattern analysis and applications : PAA 2024-09, Vol.27 (3), Article 93
Main Authors: Liu, Shangwang, Wang, Peixia, Lin, Yinghai, Zhou, Bingyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-a6d4093d8b3405c289ec4f79e62fcbc4411c4949f9b4f931d1740ef7efd51c0a3
container_end_page
container_issue 3
container_start_page
container_title Pattern analysis and applications : PAA
container_volume 27
creator Liu, Shangwang
Wang, Peixia
Lin, Yinghai
Zhou, Bingyan
description Skin disease image segmentation faces two major challenges: the complex and varied lesion morphology and the presence of interfering image backgrounds. To address these difficulties in skin disease image segmentation, we propose a Residual U-Net architecture with Channel-Space Separate Attention based on depthwise separable convolutions. The multi-scale residual U-Net modules in the encoder efficiently capture multi-scale texture information in lesions and backgrounds within a single stage, overcoming the limitations of U-Net in extracting just local features. The introduction of ConvMixer Block for global contextual modeling contributes to suppress complex background interference and enhances the overall understanding of lesion morphology. Additionally, we employ a Channel-Space Separate Attention mechanism with depthwise separable convolutions(CSSA-DSC) for feature fusion, effectively addressing the limited expressiveness issue associated with U-Net’s direct skip-connection concatenation. Experimental results on the PH2, ISIC 2017, and ISIC 2018 datasets demonstrate our method’s strong multi-scale modeling and feature expression capabilities.
doi_str_mv 10.1007/s10044-024-01307-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3087694806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087694806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-a6d4093d8b3405c289ec4f79e62fcbc4411c4949f9b4f931d1740ef7efd51c0a3</originalsourceid><addsrcrecordid>eNp9kM1KxDAURosoOI6-gKuA62jSpE3jTgb_YFRQB9yFNL3tdJxJa5PO4NubWtGdi5ubxfm-CyeKTik5p4SICxdezjGJw1BGBBZ70YRyxrBIkrf93z-nh9GRcytCGGNxNom2Lw_PC_wI_hK599qionagHaB6oytADqoNWK993VjUu9pWyCy1tbDGrtVmAFrdaQ9Iex_AAdvVfokKaP1yF7p-iHwNyDR226z7AXLH0UGp1w5OfvY0Wtxcv87u8Pzp9n52NccmFsRjnRacSFZkOeMkMXEmwfBSSEjj0uSGc0oNl1yWMuelZLSgghMoBZRFQg3RbBqdjb1t13z04LxaNX1nw0nFSCZSyTOSBioeKdM1znVQqrYLArpPRYka_KrRrwp-1bdfJUKIjSEXYFtB91f9T-oLFpCAGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087694806</pqid></control><display><type>article</type><title>SMRU-Net: skin disease image segmentation using channel-space separate attention with depthwise separable convolutions</title><source>Springer Link</source><creator>Liu, Shangwang ; Wang, Peixia ; Lin, Yinghai ; Zhou, Bingyan</creator><creatorcontrib>Liu, Shangwang ; Wang, Peixia ; Lin, Yinghai ; Zhou, Bingyan</creatorcontrib><description>Skin disease image segmentation faces two major challenges: the complex and varied lesion morphology and the presence of interfering image backgrounds. To address these difficulties in skin disease image segmentation, we propose a Residual U-Net architecture with Channel-Space Separate Attention based on depthwise separable convolutions. The multi-scale residual U-Net modules in the encoder efficiently capture multi-scale texture information in lesions and backgrounds within a single stage, overcoming the limitations of U-Net in extracting just local features. The introduction of ConvMixer Block for global contextual modeling contributes to suppress complex background interference and enhances the overall understanding of lesion morphology. Additionally, we employ a Channel-Space Separate Attention mechanism with depthwise separable convolutions(CSSA-DSC) for feature fusion, effectively addressing the limited expressiveness issue associated with U-Net’s direct skip-connection concatenation. Experimental results on the PH2, ISIC 2017, and ISIC 2018 datasets demonstrate our method’s strong multi-scale modeling and feature expression capabilities.</description><identifier>ISSN: 1433-7541</identifier><identifier>EISSN: 1433-755X</identifier><identifier>DOI: 10.1007/s10044-024-01307-7</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Channel morphology ; Computer Science ; Image segmentation ; Lesions ; Modelling ; Original Article ; Pattern Recognition</subject><ispartof>Pattern analysis and applications : PAA, 2024-09, Vol.27 (3), Article 93</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-a6d4093d8b3405c289ec4f79e62fcbc4411c4949f9b4f931d1740ef7efd51c0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Shangwang</creatorcontrib><creatorcontrib>Wang, Peixia</creatorcontrib><creatorcontrib>Lin, Yinghai</creatorcontrib><creatorcontrib>Zhou, Bingyan</creatorcontrib><title>SMRU-Net: skin disease image segmentation using channel-space separate attention with depthwise separable convolutions</title><title>Pattern analysis and applications : PAA</title><addtitle>Pattern Anal Applic</addtitle><description>Skin disease image segmentation faces two major challenges: the complex and varied lesion morphology and the presence of interfering image backgrounds. To address these difficulties in skin disease image segmentation, we propose a Residual U-Net architecture with Channel-Space Separate Attention based on depthwise separable convolutions. The multi-scale residual U-Net modules in the encoder efficiently capture multi-scale texture information in lesions and backgrounds within a single stage, overcoming the limitations of U-Net in extracting just local features. The introduction of ConvMixer Block for global contextual modeling contributes to suppress complex background interference and enhances the overall understanding of lesion morphology. Additionally, we employ a Channel-Space Separate Attention mechanism with depthwise separable convolutions(CSSA-DSC) for feature fusion, effectively addressing the limited expressiveness issue associated with U-Net’s direct skip-connection concatenation. Experimental results on the PH2, ISIC 2017, and ISIC 2018 datasets demonstrate our method’s strong multi-scale modeling and feature expression capabilities.</description><subject>Channel morphology</subject><subject>Computer Science</subject><subject>Image segmentation</subject><subject>Lesions</subject><subject>Modelling</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><issn>1433-7541</issn><issn>1433-755X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAURosoOI6-gKuA62jSpE3jTgb_YFRQB9yFNL3tdJxJa5PO4NubWtGdi5ubxfm-CyeKTik5p4SICxdezjGJw1BGBBZ70YRyxrBIkrf93z-nh9GRcytCGGNxNom2Lw_PC_wI_hK599qionagHaB6oytADqoNWK993VjUu9pWyCy1tbDGrtVmAFrdaQ9Iex_AAdvVfokKaP1yF7p-iHwNyDR226z7AXLH0UGp1w5OfvY0Wtxcv87u8Pzp9n52NccmFsRjnRacSFZkOeMkMXEmwfBSSEjj0uSGc0oNl1yWMuelZLSgghMoBZRFQg3RbBqdjb1t13z04LxaNX1nw0nFSCZSyTOSBioeKdM1znVQqrYLArpPRYka_KrRrwp-1bdfJUKIjSEXYFtB91f9T-oLFpCAGw</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Liu, Shangwang</creator><creator>Wang, Peixia</creator><creator>Lin, Yinghai</creator><creator>Zhou, Bingyan</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240901</creationdate><title>SMRU-Net: skin disease image segmentation using channel-space separate attention with depthwise separable convolutions</title><author>Liu, Shangwang ; Wang, Peixia ; Lin, Yinghai ; Zhou, Bingyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-a6d4093d8b3405c289ec4f79e62fcbc4411c4949f9b4f931d1740ef7efd51c0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Channel morphology</topic><topic>Computer Science</topic><topic>Image segmentation</topic><topic>Lesions</topic><topic>Modelling</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shangwang</creatorcontrib><creatorcontrib>Wang, Peixia</creatorcontrib><creatorcontrib>Lin, Yinghai</creatorcontrib><creatorcontrib>Zhou, Bingyan</creatorcontrib><collection>CrossRef</collection><jtitle>Pattern analysis and applications : PAA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shangwang</au><au>Wang, Peixia</au><au>Lin, Yinghai</au><au>Zhou, Bingyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SMRU-Net: skin disease image segmentation using channel-space separate attention with depthwise separable convolutions</atitle><jtitle>Pattern analysis and applications : PAA</jtitle><stitle>Pattern Anal Applic</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>27</volume><issue>3</issue><artnum>93</artnum><issn>1433-7541</issn><eissn>1433-755X</eissn><abstract>Skin disease image segmentation faces two major challenges: the complex and varied lesion morphology and the presence of interfering image backgrounds. To address these difficulties in skin disease image segmentation, we propose a Residual U-Net architecture with Channel-Space Separate Attention based on depthwise separable convolutions. The multi-scale residual U-Net modules in the encoder efficiently capture multi-scale texture information in lesions and backgrounds within a single stage, overcoming the limitations of U-Net in extracting just local features. The introduction of ConvMixer Block for global contextual modeling contributes to suppress complex background interference and enhances the overall understanding of lesion morphology. Additionally, we employ a Channel-Space Separate Attention mechanism with depthwise separable convolutions(CSSA-DSC) for feature fusion, effectively addressing the limited expressiveness issue associated with U-Net’s direct skip-connection concatenation. Experimental results on the PH2, ISIC 2017, and ISIC 2018 datasets demonstrate our method’s strong multi-scale modeling and feature expression capabilities.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10044-024-01307-7</doi></addata></record>
fulltext fulltext
identifier ISSN: 1433-7541
ispartof Pattern analysis and applications : PAA, 2024-09, Vol.27 (3), Article 93
issn 1433-7541
1433-755X
language eng
recordid cdi_proquest_journals_3087694806
source Springer Link
subjects Channel morphology
Computer Science
Image segmentation
Lesions
Modelling
Original Article
Pattern Recognition
title SMRU-Net: skin disease image segmentation using channel-space separate attention with depthwise separable convolutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A03%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SMRU-Net:%20skin%20disease%20image%20segmentation%20using%20channel-space%20separate%20attention%20with%20depthwise%20separable%20convolutions&rft.jtitle=Pattern%20analysis%20and%20applications%20:%20PAA&rft.au=Liu,%20Shangwang&rft.date=2024-09-01&rft.volume=27&rft.issue=3&rft.artnum=93&rft.issn=1433-7541&rft.eissn=1433-755X&rft_id=info:doi/10.1007/s10044-024-01307-7&rft_dat=%3Cproquest_cross%3E3087694806%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-a6d4093d8b3405c289ec4f79e62fcbc4411c4949f9b4f931d1740ef7efd51c0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3087694806&rft_id=info:pmid/&rfr_iscdi=true