Loading…
On a generalized notion of metrics
In these notes we generalize the notion of a (pseudo) metric measuring the distance of two points, to a (pseudo) n -metric which assigns a value to a tuple of n ≥ 2 points. Some elementary properties of pseudo n -metrics are provided and their construction via exterior products is investigated. We d...
Saved in:
Published in: | Aequationes mathematicae 2024-08, Vol.98 (4), p.953-977 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c244t-958ed07cca36ec6c3f6fa915eda9a9ca99b0d654ca5c0a55725f3b8b93fa3be43 |
container_end_page | 977 |
container_issue | 4 |
container_start_page | 953 |
container_title | Aequationes mathematicae |
container_volume | 98 |
creator | Beyn, Wolf-Jürgen |
description | In these notes we generalize the notion of a (pseudo) metric measuring the distance of two points, to a (pseudo)
n
-metric which assigns a value to a tuple of
n
≥
2
points. Some elementary properties of pseudo
n
-metrics are provided and their construction via exterior products is investigated. We discuss some examples from the geometry of Euclidean vector spaces leading to pseudo
n
-metrics on the unit sphere, on the Stiefel manifold, and on the Grassmann manifold. Further, we construct a pseudo
n
-metric on hypergraphs and discuss the problem of generalizing the Hausdorff metric for closed sets to a pseudo
n
-metric. |
doi_str_mv | 10.1007/s00010-024-01092-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3087694876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087694876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-958ed07cca36ec6c3f6fa915eda9a9ca99b0d654ca5c0a55725f3b8b93fa3be43</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOi5-jk32ZzlKJVKPSi55DNJmVLm9Rke1g_vakrePMyj2HeewM_hG4JPBAA-ZgBgAAGynFRRfF4hmaEU8CNAnaOZqc7ViD4JbrKeVs2KiWbobt1qEy1ccEls-u_XFeFOPQxVNFXezek3uZrdOHNLrubX52jj5fn98UrXq2Xb4unFbaU8wEr0bgOpLWG1c7WlvnaG0WE64wyyhqlWuhqwa0RFowQkgrP2qZVzBvWOs7m6H7qPaT4eXR50Nt4TKG81AwaWSteRnHRyWVTzDk5rw-p35s0agL6xEJPLHRhoX9Y6LGE2BTKxRw2Lv1V_5P6BvPZYSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087694876</pqid></control><display><type>article</type><title>On a generalized notion of metrics</title><source>Springer Nature</source><creator>Beyn, Wolf-Jürgen</creator><creatorcontrib>Beyn, Wolf-Jürgen</creatorcontrib><description>In these notes we generalize the notion of a (pseudo) metric measuring the distance of two points, to a (pseudo)
n
-metric which assigns a value to a tuple of
n
≥
2
points. Some elementary properties of pseudo
n
-metrics are provided and their construction via exterior products is investigated. We discuss some examples from the geometry of Euclidean vector spaces leading to pseudo
n
-metrics on the unit sphere, on the Stiefel manifold, and on the Grassmann manifold. Further, we construct a pseudo
n
-metric on hypergraphs and discuss the problem of generalizing the Hausdorff metric for closed sets to a pseudo
n
-metric.</description><identifier>ISSN: 0001-9054</identifier><identifier>EISSN: 1420-8903</identifier><identifier>DOI: 10.1007/s00010-024-01092-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Combinatorics ; Euclidean geometry ; Manifolds (mathematics) ; Mathematics ; Mathematics and Statistics ; Metric space ; Vector spaces</subject><ispartof>Aequationes mathematicae, 2024-08, Vol.98 (4), p.953-977</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-958ed07cca36ec6c3f6fa915eda9a9ca99b0d654ca5c0a55725f3b8b93fa3be43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Beyn, Wolf-Jürgen</creatorcontrib><title>On a generalized notion of metrics</title><title>Aequationes mathematicae</title><addtitle>Aequat. Math</addtitle><description>In these notes we generalize the notion of a (pseudo) metric measuring the distance of two points, to a (pseudo)
n
-metric which assigns a value to a tuple of
n
≥
2
points. Some elementary properties of pseudo
n
-metrics are provided and their construction via exterior products is investigated. We discuss some examples from the geometry of Euclidean vector spaces leading to pseudo
n
-metrics on the unit sphere, on the Stiefel manifold, and on the Grassmann manifold. Further, we construct a pseudo
n
-metric on hypergraphs and discuss the problem of generalizing the Hausdorff metric for closed sets to a pseudo
n
-metric.</description><subject>Analysis</subject><subject>Combinatorics</subject><subject>Euclidean geometry</subject><subject>Manifolds (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Vector spaces</subject><issn>0001-9054</issn><issn>1420-8903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOi5-jk32ZzlKJVKPSi55DNJmVLm9Rke1g_vakrePMyj2HeewM_hG4JPBAA-ZgBgAAGynFRRfF4hmaEU8CNAnaOZqc7ViD4JbrKeVs2KiWbobt1qEy1ccEls-u_XFeFOPQxVNFXezek3uZrdOHNLrubX52jj5fn98UrXq2Xb4unFbaU8wEr0bgOpLWG1c7WlvnaG0WE64wyyhqlWuhqwa0RFowQkgrP2qZVzBvWOs7m6H7qPaT4eXR50Nt4TKG81AwaWSteRnHRyWVTzDk5rw-p35s0agL6xEJPLHRhoX9Y6LGE2BTKxRw2Lv1V_5P6BvPZYSA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Beyn, Wolf-Jürgen</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240801</creationdate><title>On a generalized notion of metrics</title><author>Beyn, Wolf-Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-958ed07cca36ec6c3f6fa915eda9a9ca99b0d654ca5c0a55725f3b8b93fa3be43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Combinatorics</topic><topic>Euclidean geometry</topic><topic>Manifolds (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beyn, Wolf-Jürgen</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Aequationes mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beyn, Wolf-Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a generalized notion of metrics</atitle><jtitle>Aequationes mathematicae</jtitle><stitle>Aequat. Math</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>98</volume><issue>4</issue><spage>953</spage><epage>977</epage><pages>953-977</pages><issn>0001-9054</issn><eissn>1420-8903</eissn><abstract>In these notes we generalize the notion of a (pseudo) metric measuring the distance of two points, to a (pseudo)
n
-metric which assigns a value to a tuple of
n
≥
2
points. Some elementary properties of pseudo
n
-metrics are provided and their construction via exterior products is investigated. We discuss some examples from the geometry of Euclidean vector spaces leading to pseudo
n
-metrics on the unit sphere, on the Stiefel manifold, and on the Grassmann manifold. Further, we construct a pseudo
n
-metric on hypergraphs and discuss the problem of generalizing the Hausdorff metric for closed sets to a pseudo
n
-metric.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00010-024-01092-y</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-9054 |
ispartof | Aequationes mathematicae, 2024-08, Vol.98 (4), p.953-977 |
issn | 0001-9054 1420-8903 |
language | eng |
recordid | cdi_proquest_journals_3087694876 |
source | Springer Nature |
subjects | Analysis Combinatorics Euclidean geometry Manifolds (mathematics) Mathematics Mathematics and Statistics Metric space Vector spaces |
title | On a generalized notion of metrics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A51%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20generalized%20notion%20of%20metrics&rft.jtitle=Aequationes%20mathematicae&rft.au=Beyn,%20Wolf-J%C3%BCrgen&rft.date=2024-08-01&rft.volume=98&rft.issue=4&rft.spage=953&rft.epage=977&rft.pages=953-977&rft.issn=0001-9054&rft.eissn=1420-8903&rft_id=info:doi/10.1007/s00010-024-01092-y&rft_dat=%3Cproquest_cross%3E3087694876%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-958ed07cca36ec6c3f6fa915eda9a9ca99b0d654ca5c0a55725f3b8b93fa3be43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3087694876&rft_id=info:pmid/&rfr_iscdi=true |