Loading…

The Rotating Excitons in 2D Materials: Valley Zeeman Effect and Chirality

The rotational dynamics of the intralayer and interlayer excitons with their inherent momenta of inertia in the monolayer and bilayer transition metal dichalcogenides, respectively, where the new chirality of exciton is endowed by the rotational angular momentum, namely, the formations of left‐ and...

Full description

Saved in:
Bibliographic Details
Published in:Physica status solidi. PSS-RRL. Rapid research letters 2024-08, Vol.18 (8), p.n/a
Main Authors: Cui, Yu, Ma, Xin‐Jun, Deng, Jia‐Pei, Li, Shao‐Juan, Yang, Ran‐Bo, Li, Zhi‐Qing, Wang, Zi‐Wu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2720-39632d4d163d5c611d51bf9c474f27a000598109694e23ea7319de07f63888923
container_end_page n/a
container_issue 8
container_start_page
container_title Physica status solidi. PSS-RRL. Rapid research letters
container_volume 18
creator Cui, Yu
Ma, Xin‐Jun
Deng, Jia‐Pei
Li, Shao‐Juan
Yang, Ran‐Bo
Li, Zhi‐Qing
Wang, Zi‐Wu
description The rotational dynamics of the intralayer and interlayer excitons with their inherent momenta of inertia in the monolayer and bilayer transition metal dichalcogenides, respectively, where the new chirality of exciton is endowed by the rotational angular momentum, namely, the formations of left‐ and right‐handed excitons at the +K and −K valleys, respectively, is proposed. It is found that angular momenta exchange between excitons and its surrounding phononic bath result in the large fluctuation of the effective g‐factor and the asymmetry of valley Zeeman splitting observed in most recently experiments, both of which sensitively depend on the magnetic moments provided by the phononic environment. This rotating exciton model not only proposes a new controllable knob in valleytronics, but opens the door to explore the angular momentum exchange of the chiral quasiparticles with the many‐body environment. GA: Herein, the rotational dynamics of the excitons in monolayer and bilayer transition metal dichalcogenides are proposed, where the right‐ and left‐handed excitons can be defined by the rotational angular momentum. The exchange of angular momenta between the rotating excitons and their surrounding phononic bath results in the strong renormalization of the g‐factors, providing a reasonable explanation for the asymmetry of valley Zeeman splitting observed in experiments. Moreover, the chirality of phononic bath and phonon magnetic moment could be reflected directly by the valley Zeeman effect.
doi_str_mv 10.1002/pssr.202400060
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3089133544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089133544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2720-39632d4d163d5c611d51bf9c474f27a000598109694e23ea7319de07f63888923</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EEqWwMltiTrl-xI7ZUClQqQjUFgYWyyQ2dZUmxXYF_fekKoKR6d7hfPdxEDonMCAA9HIdYxhQoBwABBygHikEzQSVcPjb5_wYncS4BMiV5KyHxvOFxdM2meSbdzz6Kn1qm4h9g-kNfjDJBm_qeIVfTF3bLX61dmUaPHLOlgmbpsLDhQ-m9ml7io5ch9qzn9pHz7ej-fA-mzzejYfXk6ykkkLGlGC04hURrMpLQUiVkzenSi65o9LA7rKCgBKKW8qskYyoyoJ0ghVFoSjro4v93HVoPzY2Jr1sN6HpVmoGhSKM5Zx31GBPlaHtvFin18GvTNhqAnqnS-906V9dXUDtA5--e_QfWj_NZtO_7DeLCGv6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089133544</pqid></control><display><type>article</type><title>The Rotating Excitons in 2D Materials: Valley Zeeman Effect and Chirality</title><source>Wiley</source><creator>Cui, Yu ; Ma, Xin‐Jun ; Deng, Jia‐Pei ; Li, Shao‐Juan ; Yang, Ran‐Bo ; Li, Zhi‐Qing ; Wang, Zi‐Wu</creator><creatorcontrib>Cui, Yu ; Ma, Xin‐Jun ; Deng, Jia‐Pei ; Li, Shao‐Juan ; Yang, Ran‐Bo ; Li, Zhi‐Qing ; Wang, Zi‐Wu</creatorcontrib><description>The rotational dynamics of the intralayer and interlayer excitons with their inherent momenta of inertia in the monolayer and bilayer transition metal dichalcogenides, respectively, where the new chirality of exciton is endowed by the rotational angular momentum, namely, the formations of left‐ and right‐handed excitons at the +K and −K valleys, respectively, is proposed. It is found that angular momenta exchange between excitons and its surrounding phononic bath result in the large fluctuation of the effective g‐factor and the asymmetry of valley Zeeman splitting observed in most recently experiments, both of which sensitively depend on the magnetic moments provided by the phononic environment. This rotating exciton model not only proposes a new controllable knob in valleytronics, but opens the door to explore the angular momentum exchange of the chiral quasiparticles with the many‐body environment. GA: Herein, the rotational dynamics of the excitons in monolayer and bilayer transition metal dichalcogenides are proposed, where the right‐ and left‐handed excitons can be defined by the rotational angular momentum. The exchange of angular momenta between the rotating excitons and their surrounding phononic bath results in the strong renormalization of the g‐factors, providing a reasonable explanation for the asymmetry of valley Zeeman splitting observed in experiments. Moreover, the chirality of phononic bath and phonon magnetic moment could be reflected directly by the valley Zeeman effect.</description><identifier>ISSN: 1862-6254</identifier><identifier>EISSN: 1862-6270</identifier><identifier>DOI: 10.1002/pssr.202400060</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Angular momentum ; Bilayers ; chiralities ; Chirality ; Controllability ; Elementary excitations ; Excitons ; Interlayers ; Magnetic moments ; phonon angular momenta ; Rotating bodies ; rotating excitons ; Rotation ; Transition metal compounds ; transition metal dichalcogenides ; Two dimensional materials ; valley Zeeman effects ; Zeeman effect</subject><ispartof>Physica status solidi. PSS-RRL. Rapid research letters, 2024-08, Vol.18 (8), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2720-39632d4d163d5c611d51bf9c474f27a000598109694e23ea7319de07f63888923</cites><orcidid>0000-0002-8877-8313</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Cui, Yu</creatorcontrib><creatorcontrib>Ma, Xin‐Jun</creatorcontrib><creatorcontrib>Deng, Jia‐Pei</creatorcontrib><creatorcontrib>Li, Shao‐Juan</creatorcontrib><creatorcontrib>Yang, Ran‐Bo</creatorcontrib><creatorcontrib>Li, Zhi‐Qing</creatorcontrib><creatorcontrib>Wang, Zi‐Wu</creatorcontrib><title>The Rotating Excitons in 2D Materials: Valley Zeeman Effect and Chirality</title><title>Physica status solidi. PSS-RRL. Rapid research letters</title><description>The rotational dynamics of the intralayer and interlayer excitons with their inherent momenta of inertia in the monolayer and bilayer transition metal dichalcogenides, respectively, where the new chirality of exciton is endowed by the rotational angular momentum, namely, the formations of left‐ and right‐handed excitons at the +K and −K valleys, respectively, is proposed. It is found that angular momenta exchange between excitons and its surrounding phononic bath result in the large fluctuation of the effective g‐factor and the asymmetry of valley Zeeman splitting observed in most recently experiments, both of which sensitively depend on the magnetic moments provided by the phononic environment. This rotating exciton model not only proposes a new controllable knob in valleytronics, but opens the door to explore the angular momentum exchange of the chiral quasiparticles with the many‐body environment. GA: Herein, the rotational dynamics of the excitons in monolayer and bilayer transition metal dichalcogenides are proposed, where the right‐ and left‐handed excitons can be defined by the rotational angular momentum. The exchange of angular momenta between the rotating excitons and their surrounding phononic bath results in the strong renormalization of the g‐factors, providing a reasonable explanation for the asymmetry of valley Zeeman splitting observed in experiments. Moreover, the chirality of phononic bath and phonon magnetic moment could be reflected directly by the valley Zeeman effect.</description><subject>Angular momentum</subject><subject>Bilayers</subject><subject>chiralities</subject><subject>Chirality</subject><subject>Controllability</subject><subject>Elementary excitations</subject><subject>Excitons</subject><subject>Interlayers</subject><subject>Magnetic moments</subject><subject>phonon angular momenta</subject><subject>Rotating bodies</subject><subject>rotating excitons</subject><subject>Rotation</subject><subject>Transition metal compounds</subject><subject>transition metal dichalcogenides</subject><subject>Two dimensional materials</subject><subject>valley Zeeman effects</subject><subject>Zeeman effect</subject><issn>1862-6254</issn><issn>1862-6270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAURi0EEqWwMltiTrl-xI7ZUClQqQjUFgYWyyQ2dZUmxXYF_fekKoKR6d7hfPdxEDonMCAA9HIdYxhQoBwABBygHikEzQSVcPjb5_wYncS4BMiV5KyHxvOFxdM2meSbdzz6Kn1qm4h9g-kNfjDJBm_qeIVfTF3bLX61dmUaPHLOlgmbpsLDhQ-m9ml7io5ch9qzn9pHz7ej-fA-mzzejYfXk6ykkkLGlGC04hURrMpLQUiVkzenSi65o9LA7rKCgBKKW8qskYyoyoJ0ghVFoSjro4v93HVoPzY2Jr1sN6HpVmoGhSKM5Zx31GBPlaHtvFin18GvTNhqAnqnS-906V9dXUDtA5--e_QfWj_NZtO_7DeLCGv6</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Cui, Yu</creator><creator>Ma, Xin‐Jun</creator><creator>Deng, Jia‐Pei</creator><creator>Li, Shao‐Juan</creator><creator>Yang, Ran‐Bo</creator><creator>Li, Zhi‐Qing</creator><creator>Wang, Zi‐Wu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8877-8313</orcidid></search><sort><creationdate>202408</creationdate><title>The Rotating Excitons in 2D Materials: Valley Zeeman Effect and Chirality</title><author>Cui, Yu ; Ma, Xin‐Jun ; Deng, Jia‐Pei ; Li, Shao‐Juan ; Yang, Ran‐Bo ; Li, Zhi‐Qing ; Wang, Zi‐Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2720-39632d4d163d5c611d51bf9c474f27a000598109694e23ea7319de07f63888923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Angular momentum</topic><topic>Bilayers</topic><topic>chiralities</topic><topic>Chirality</topic><topic>Controllability</topic><topic>Elementary excitations</topic><topic>Excitons</topic><topic>Interlayers</topic><topic>Magnetic moments</topic><topic>phonon angular momenta</topic><topic>Rotating bodies</topic><topic>rotating excitons</topic><topic>Rotation</topic><topic>Transition metal compounds</topic><topic>transition metal dichalcogenides</topic><topic>Two dimensional materials</topic><topic>valley Zeeman effects</topic><topic>Zeeman effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Yu</creatorcontrib><creatorcontrib>Ma, Xin‐Jun</creatorcontrib><creatorcontrib>Deng, Jia‐Pei</creatorcontrib><creatorcontrib>Li, Shao‐Juan</creatorcontrib><creatorcontrib>Yang, Ran‐Bo</creatorcontrib><creatorcontrib>Li, Zhi‐Qing</creatorcontrib><creatorcontrib>Wang, Zi‐Wu</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Yu</au><au>Ma, Xin‐Jun</au><au>Deng, Jia‐Pei</au><au>Li, Shao‐Juan</au><au>Yang, Ran‐Bo</au><au>Li, Zhi‐Qing</au><au>Wang, Zi‐Wu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Rotating Excitons in 2D Materials: Valley Zeeman Effect and Chirality</atitle><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle><date>2024-08</date><risdate>2024</risdate><volume>18</volume><issue>8</issue><epage>n/a</epage><issn>1862-6254</issn><eissn>1862-6270</eissn><abstract>The rotational dynamics of the intralayer and interlayer excitons with their inherent momenta of inertia in the monolayer and bilayer transition metal dichalcogenides, respectively, where the new chirality of exciton is endowed by the rotational angular momentum, namely, the formations of left‐ and right‐handed excitons at the +K and −K valleys, respectively, is proposed. It is found that angular momenta exchange between excitons and its surrounding phononic bath result in the large fluctuation of the effective g‐factor and the asymmetry of valley Zeeman splitting observed in most recently experiments, both of which sensitively depend on the magnetic moments provided by the phononic environment. This rotating exciton model not only proposes a new controllable knob in valleytronics, but opens the door to explore the angular momentum exchange of the chiral quasiparticles with the many‐body environment. GA: Herein, the rotational dynamics of the excitons in monolayer and bilayer transition metal dichalcogenides are proposed, where the right‐ and left‐handed excitons can be defined by the rotational angular momentum. The exchange of angular momenta between the rotating excitons and their surrounding phononic bath results in the strong renormalization of the g‐factors, providing a reasonable explanation for the asymmetry of valley Zeeman splitting observed in experiments. Moreover, the chirality of phononic bath and phonon magnetic moment could be reflected directly by the valley Zeeman effect.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssr.202400060</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8877-8313</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6254
ispartof Physica status solidi. PSS-RRL. Rapid research letters, 2024-08, Vol.18 (8), p.n/a
issn 1862-6254
1862-6270
language eng
recordid cdi_proquest_journals_3089133544
source Wiley
subjects Angular momentum
Bilayers
chiralities
Chirality
Controllability
Elementary excitations
Excitons
Interlayers
Magnetic moments
phonon angular momenta
Rotating bodies
rotating excitons
Rotation
Transition metal compounds
transition metal dichalcogenides
Two dimensional materials
valley Zeeman effects
Zeeman effect
title The Rotating Excitons in 2D Materials: Valley Zeeman Effect and Chirality
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A24%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Rotating%20Excitons%20in%202D%20Materials:%20Valley%20Zeeman%20Effect%20and%20Chirality&rft.jtitle=Physica%20status%20solidi.%20PSS-RRL.%20Rapid%20research%20letters&rft.au=Cui,%20Yu&rft.date=2024-08&rft.volume=18&rft.issue=8&rft.epage=n/a&rft.issn=1862-6254&rft.eissn=1862-6270&rft_id=info:doi/10.1002/pssr.202400060&rft_dat=%3Cproquest_cross%3E3089133544%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2720-39632d4d163d5c611d51bf9c474f27a000598109694e23ea7319de07f63888923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3089133544&rft_id=info:pmid/&rfr_iscdi=true