Loading…

Dimensionality Reduction and Nearest Neighbors for Improving Out-of-Distribution Detection in Medical Image Segmentation

Clinically deployed deep learning-based segmentation models are known to fail on data outside of their training distributions. While clinicians review the segmentations, these models tend to perform well in most instances, which could exacerbate automation bias. Therefore, detecting out-of-distribut...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-10
Main Authors: Woodland, McKell, Patel, Nihil, Castelo, Austin, Mais Al Taie, Eltaher, Mohamed, Yung, Joshua P, Netherton, Tucker J, Calderone, Tiffany L, Sanchez, Jessica I, Cleere, Darrel W, Elsaiey, Ahmed, Gupta, Nakul, Victor, David, Beretta, Laura, Patel, Ankit B, Brock, Kristy K
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Woodland, McKell
Patel, Nihil
Castelo, Austin
Mais Al Taie
Eltaher, Mohamed
Yung, Joshua P
Netherton, Tucker J
Calderone, Tiffany L
Sanchez, Jessica I
Cleere, Darrel W
Elsaiey, Ahmed
Gupta, Nakul
Victor, David
Beretta, Laura
Patel, Ankit B
Brock, Kristy K
description Clinically deployed deep learning-based segmentation models are known to fail on data outside of their training distributions. While clinicians review the segmentations, these models tend to perform well in most instances, which could exacerbate automation bias. Therefore, detecting out-of-distribution images at inference is critical to warn the clinicians that the model likely failed. This work applied the Mahalanobis distance (MD) post hoc to the bottleneck features of four Swin UNETR and nnU-net models that segmented the liver on T1-weighted magnetic resonance imaging and computed tomography. By reducing the dimensions of the bottleneck features with either principal component analysis or uniform manifold approximation and projection, images the models failed on were detected with high performance and minimal computational load. In addition, this work explored a non-parametric alternative to the MD, a k-th nearest neighbors distance (KNN). KNN drastically improved scalability and performance over MD when both were applied to raw and average-pooled bottleneck features.
doi_str_mv 10.48550/arxiv.2408.02761
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3090036218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090036218</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-9bcc4e039d6f95308164a10d655c964801c43a4e22ef57fa4ed79b11309a6943</originalsourceid><addsrcrecordid>eNotT8lOwzAQtZCQqEo_gJslzgnjNfYRNSyVCpUo98pJnOAqTcB2qvL3GMrpzegtMw-hGwI5V0LAnfEnd8wpB5UDLSS5QDPKGMkUp_QKLULYAwCVBRWCzdCpdAc7BDcOpnfxG7_ZZqpjWrEZGvxqjbchJnTdRzX6gNvR49Xh049HN3R4M8VsbLPShehdNf35ShvtOcEN-MU2rjZ9spjO4q3t0rFoftlrdNmaPtjFP87R9vHhffmcrTdPq-X9OjOCqkxXdc0tMN3IVgsGikhuCDRSiFpLroDUnBluKbWtKNo0NYWuCGGgjdSczdHtOTV9_DWlKrv9OPnUNeySBIBJShT7AdGfXtU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090036218</pqid></control><display><type>article</type><title>Dimensionality Reduction and Nearest Neighbors for Improving Out-of-Distribution Detection in Medical Image Segmentation</title><source>Publicly Available Content Database</source><creator>Woodland, McKell ; Patel, Nihil ; Castelo, Austin ; Mais Al Taie ; Eltaher, Mohamed ; Yung, Joshua P ; Netherton, Tucker J ; Calderone, Tiffany L ; Sanchez, Jessica I ; Cleere, Darrel W ; Elsaiey, Ahmed ; Gupta, Nakul ; Victor, David ; Beretta, Laura ; Patel, Ankit B ; Brock, Kristy K</creator><creatorcontrib>Woodland, McKell ; Patel, Nihil ; Castelo, Austin ; Mais Al Taie ; Eltaher, Mohamed ; Yung, Joshua P ; Netherton, Tucker J ; Calderone, Tiffany L ; Sanchez, Jessica I ; Cleere, Darrel W ; Elsaiey, Ahmed ; Gupta, Nakul ; Victor, David ; Beretta, Laura ; Patel, Ankit B ; Brock, Kristy K</creatorcontrib><description>Clinically deployed deep learning-based segmentation models are known to fail on data outside of their training distributions. While clinicians review the segmentations, these models tend to perform well in most instances, which could exacerbate automation bias. Therefore, detecting out-of-distribution images at inference is critical to warn the clinicians that the model likely failed. This work applied the Mahalanobis distance (MD) post hoc to the bottleneck features of four Swin UNETR and nnU-net models that segmented the liver on T1-weighted magnetic resonance imaging and computed tomography. By reducing the dimensions of the bottleneck features with either principal component analysis or uniform manifold approximation and projection, images the models failed on were detected with high performance and minimal computational load. In addition, this work explored a non-parametric alternative to the MD, a k-th nearest neighbors distance (KNN). KNN drastically improved scalability and performance over MD when both were applied to raw and average-pooled bottleneck features.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2408.02761</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computed tomography ; Image segmentation ; Magnetic resonance imaging ; Medical imaging ; Principal components analysis</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3090036218?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25733,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Woodland, McKell</creatorcontrib><creatorcontrib>Patel, Nihil</creatorcontrib><creatorcontrib>Castelo, Austin</creatorcontrib><creatorcontrib>Mais Al Taie</creatorcontrib><creatorcontrib>Eltaher, Mohamed</creatorcontrib><creatorcontrib>Yung, Joshua P</creatorcontrib><creatorcontrib>Netherton, Tucker J</creatorcontrib><creatorcontrib>Calderone, Tiffany L</creatorcontrib><creatorcontrib>Sanchez, Jessica I</creatorcontrib><creatorcontrib>Cleere, Darrel W</creatorcontrib><creatorcontrib>Elsaiey, Ahmed</creatorcontrib><creatorcontrib>Gupta, Nakul</creatorcontrib><creatorcontrib>Victor, David</creatorcontrib><creatorcontrib>Beretta, Laura</creatorcontrib><creatorcontrib>Patel, Ankit B</creatorcontrib><creatorcontrib>Brock, Kristy K</creatorcontrib><title>Dimensionality Reduction and Nearest Neighbors for Improving Out-of-Distribution Detection in Medical Image Segmentation</title><title>arXiv.org</title><description>Clinically deployed deep learning-based segmentation models are known to fail on data outside of their training distributions. While clinicians review the segmentations, these models tend to perform well in most instances, which could exacerbate automation bias. Therefore, detecting out-of-distribution images at inference is critical to warn the clinicians that the model likely failed. This work applied the Mahalanobis distance (MD) post hoc to the bottleneck features of four Swin UNETR and nnU-net models that segmented the liver on T1-weighted magnetic resonance imaging and computed tomography. By reducing the dimensions of the bottleneck features with either principal component analysis or uniform manifold approximation and projection, images the models failed on were detected with high performance and minimal computational load. In addition, this work explored a non-parametric alternative to the MD, a k-th nearest neighbors distance (KNN). KNN drastically improved scalability and performance over MD when both were applied to raw and average-pooled bottleneck features.</description><subject>Computed tomography</subject><subject>Image segmentation</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Principal components analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotT8lOwzAQtZCQqEo_gJslzgnjNfYRNSyVCpUo98pJnOAqTcB2qvL3GMrpzegtMw-hGwI5V0LAnfEnd8wpB5UDLSS5QDPKGMkUp_QKLULYAwCVBRWCzdCpdAc7BDcOpnfxG7_ZZqpjWrEZGvxqjbchJnTdRzX6gNvR49Xh049HN3R4M8VsbLPShehdNf35ShvtOcEN-MU2rjZ9spjO4q3t0rFoftlrdNmaPtjFP87R9vHhffmcrTdPq-X9OjOCqkxXdc0tMN3IVgsGikhuCDRSiFpLroDUnBluKbWtKNo0NYWuCGGgjdSczdHtOTV9_DWlKrv9OPnUNeySBIBJShT7AdGfXtU</recordid><startdate>20241002</startdate><enddate>20241002</enddate><creator>Woodland, McKell</creator><creator>Patel, Nihil</creator><creator>Castelo, Austin</creator><creator>Mais Al Taie</creator><creator>Eltaher, Mohamed</creator><creator>Yung, Joshua P</creator><creator>Netherton, Tucker J</creator><creator>Calderone, Tiffany L</creator><creator>Sanchez, Jessica I</creator><creator>Cleere, Darrel W</creator><creator>Elsaiey, Ahmed</creator><creator>Gupta, Nakul</creator><creator>Victor, David</creator><creator>Beretta, Laura</creator><creator>Patel, Ankit B</creator><creator>Brock, Kristy K</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241002</creationdate><title>Dimensionality Reduction and Nearest Neighbors for Improving Out-of-Distribution Detection in Medical Image Segmentation</title><author>Woodland, McKell ; Patel, Nihil ; Castelo, Austin ; Mais Al Taie ; Eltaher, Mohamed ; Yung, Joshua P ; Netherton, Tucker J ; Calderone, Tiffany L ; Sanchez, Jessica I ; Cleere, Darrel W ; Elsaiey, Ahmed ; Gupta, Nakul ; Victor, David ; Beretta, Laura ; Patel, Ankit B ; Brock, Kristy K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-9bcc4e039d6f95308164a10d655c964801c43a4e22ef57fa4ed79b11309a6943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computed tomography</topic><topic>Image segmentation</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Principal components analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Woodland, McKell</creatorcontrib><creatorcontrib>Patel, Nihil</creatorcontrib><creatorcontrib>Castelo, Austin</creatorcontrib><creatorcontrib>Mais Al Taie</creatorcontrib><creatorcontrib>Eltaher, Mohamed</creatorcontrib><creatorcontrib>Yung, Joshua P</creatorcontrib><creatorcontrib>Netherton, Tucker J</creatorcontrib><creatorcontrib>Calderone, Tiffany L</creatorcontrib><creatorcontrib>Sanchez, Jessica I</creatorcontrib><creatorcontrib>Cleere, Darrel W</creatorcontrib><creatorcontrib>Elsaiey, Ahmed</creatorcontrib><creatorcontrib>Gupta, Nakul</creatorcontrib><creatorcontrib>Victor, David</creatorcontrib><creatorcontrib>Beretta, Laura</creatorcontrib><creatorcontrib>Patel, Ankit B</creatorcontrib><creatorcontrib>Brock, Kristy K</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woodland, McKell</au><au>Patel, Nihil</au><au>Castelo, Austin</au><au>Mais Al Taie</au><au>Eltaher, Mohamed</au><au>Yung, Joshua P</au><au>Netherton, Tucker J</au><au>Calderone, Tiffany L</au><au>Sanchez, Jessica I</au><au>Cleere, Darrel W</au><au>Elsaiey, Ahmed</au><au>Gupta, Nakul</au><au>Victor, David</au><au>Beretta, Laura</au><au>Patel, Ankit B</au><au>Brock, Kristy K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimensionality Reduction and Nearest Neighbors for Improving Out-of-Distribution Detection in Medical Image Segmentation</atitle><jtitle>arXiv.org</jtitle><date>2024-10-02</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Clinically deployed deep learning-based segmentation models are known to fail on data outside of their training distributions. While clinicians review the segmentations, these models tend to perform well in most instances, which could exacerbate automation bias. Therefore, detecting out-of-distribution images at inference is critical to warn the clinicians that the model likely failed. This work applied the Mahalanobis distance (MD) post hoc to the bottleneck features of four Swin UNETR and nnU-net models that segmented the liver on T1-weighted magnetic resonance imaging and computed tomography. By reducing the dimensions of the bottleneck features with either principal component analysis or uniform manifold approximation and projection, images the models failed on were detected with high performance and minimal computational load. In addition, this work explored a non-parametric alternative to the MD, a k-th nearest neighbors distance (KNN). KNN drastically improved scalability and performance over MD when both were applied to raw and average-pooled bottleneck features.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2408.02761</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3090036218
source Publicly Available Content Database
subjects Computed tomography
Image segmentation
Magnetic resonance imaging
Medical imaging
Principal components analysis
title Dimensionality Reduction and Nearest Neighbors for Improving Out-of-Distribution Detection in Medical Image Segmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A20%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimensionality%20Reduction%20and%20Nearest%20Neighbors%20for%20Improving%20Out-of-Distribution%20Detection%20in%20Medical%20Image%20Segmentation&rft.jtitle=arXiv.org&rft.au=Woodland,%20McKell&rft.date=2024-10-02&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2408.02761&rft_dat=%3Cproquest%3E3090036218%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-9bcc4e039d6f95308164a10d655c964801c43a4e22ef57fa4ed79b11309a6943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3090036218&rft_id=info:pmid/&rfr_iscdi=true