Loading…

Spatial Analysis of Aquatic Ecological Health under Future Climate Change Using Extreme Gradient Boosting Tree (XGBoost) and SWAT

Climate change not only affects the water resource system but also has a great impact on the aquatic ecosystem, which is complexly linked to various organic and inorganic matter. It is difficult to simulate the current aquatic ecosystem and predict the future system due to the immensity and complexi...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) 2024-08, Vol.16 (15), p.2085
Main Authors: Woo, Soyoung, Kim, Wonjin, Jung, Chunggil, Lee, Jiwan, Kim, Yongwon, Kim, Seongjoon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c221t-634216012bfbf8e7cb6f024971ad1ba80d7c17160cce4cc59035a3b5c0f08dca3
container_end_page
container_issue 15
container_start_page 2085
container_title Water (Basel)
container_volume 16
creator Woo, Soyoung
Kim, Wonjin
Jung, Chunggil
Lee, Jiwan
Kim, Yongwon
Kim, Seongjoon
description Climate change not only affects the water resource system but also has a great impact on the aquatic ecosystem, which is complexly linked to various organic and inorganic matter. It is difficult to simulate the current aquatic ecosystem and predict the future system due to the immensity and complexity of aquatic ecosystems; however, a spatial analysis of future aquatic ecological health is necessary if we are to adapt and take action against future climate change. In this study, we evaluated the aquatic ecological health of the Han River basin under the future climate change RCP4.5 and RCP8.5 scenarios using three indices: fish assessment index (FAI), trophic diatom index (TDI), and benthic macroinvertebrate index (BMI). For this, we developed the SWAT-XGBoost linkage algorithm, and the algorithm accuracy for the FAI, TDI, and BMI was 89.3~95.2%. In the case of the FAI and BMI assessment of aquatic ecological health, the upstream Han River was classified as a hot spot. In the case of the TDI, the downstream area of the Han River was classified as a cold spot. However, as the current TDI downstream was classified as grades D and E, continuous management is needed.
doi_str_mv 10.3390/w16152085
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3090923762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804515614</galeid><sourcerecordid>A804515614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-634216012bfbf8e7cb6f024971ad1ba80d7c17160cce4cc59035a3b5c0f08dca3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBqT34DwJe7KE1X_t1XEs_hIKHtuhtyWYnbWS7aZMs2qP_3NSKOHOY4c17AzMviu4IHjGW48cPkpCY4iy-iG4oTtmQc04u__XXUd-5dxyC51kW45voa7kXXosGFa1ojk47ZBQqDl0AJZpI05iNlmE8B9H4LeraGiyadr6zgMaN3gkf6la0G0Brp9sNmnx6CztAMytqDa1HT8Y4f5qsLAB6eJv9AAMk2hotX4vVbXSlROOg_1t70Xo6WY3nw8XL7HlcLIaSUuKHCeOUJJjQSlUqg1RWicKU5ykRNalEhutUkjQwpAQuZZxjFgtWxRIrnNVSsF50f967t-bQgfPlu-lsuNqVDOc4pyxNaGCNzqyNaKDUrTLeChmyhp2WpgWlA15kmMckTggPgsFZIK1xzoIq9za8xR5LgsuTK-WfK-wb9Op90g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090923762</pqid></control><display><type>article</type><title>Spatial Analysis of Aquatic Ecological Health under Future Climate Change Using Extreme Gradient Boosting Tree (XGBoost) and SWAT</title><source>Publicly Available Content Database</source><creator>Woo, Soyoung ; Kim, Wonjin ; Jung, Chunggil ; Lee, Jiwan ; Kim, Yongwon ; Kim, Seongjoon</creator><creatorcontrib>Woo, Soyoung ; Kim, Wonjin ; Jung, Chunggil ; Lee, Jiwan ; Kim, Yongwon ; Kim, Seongjoon</creatorcontrib><description>Climate change not only affects the water resource system but also has a great impact on the aquatic ecosystem, which is complexly linked to various organic and inorganic matter. It is difficult to simulate the current aquatic ecosystem and predict the future system due to the immensity and complexity of aquatic ecosystems; however, a spatial analysis of future aquatic ecological health is necessary if we are to adapt and take action against future climate change. In this study, we evaluated the aquatic ecological health of the Han River basin under the future climate change RCP4.5 and RCP8.5 scenarios using three indices: fish assessment index (FAI), trophic diatom index (TDI), and benthic macroinvertebrate index (BMI). For this, we developed the SWAT-XGBoost linkage algorithm, and the algorithm accuracy for the FAI, TDI, and BMI was 89.3~95.2%. In the case of the FAI and BMI assessment of aquatic ecological health, the upstream Han River was classified as a hot spot. In the case of the TDI, the downstream area of the Han River was classified as a cold spot. However, as the current TDI downstream was classified as grades D and E, continuous management is needed.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w16152085</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Aquatic ecosystems ; Climate change ; Climatic changes ; Data collection ; Drought ; Environmental impact ; Environmental monitoring ; Fish ; Hydrology ; Machine learning ; Plankton ; Precipitation ; River ecology ; Stream flow ; Water quality ; Water resources ; Watersheds</subject><ispartof>Water (Basel), 2024-08, Vol.16 (15), p.2085</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c221t-634216012bfbf8e7cb6f024971ad1ba80d7c17160cce4cc59035a3b5c0f08dca3</cites><orcidid>0000-0002-9703-7875 ; 0000-0002-5770-8873 ; 0000-0001-6307-075X ; 0000-0002-2302-3999 ; 0000-0002-9729-9373 ; 0000-0003-3133-1745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3090923762/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3090923762?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Woo, Soyoung</creatorcontrib><creatorcontrib>Kim, Wonjin</creatorcontrib><creatorcontrib>Jung, Chunggil</creatorcontrib><creatorcontrib>Lee, Jiwan</creatorcontrib><creatorcontrib>Kim, Yongwon</creatorcontrib><creatorcontrib>Kim, Seongjoon</creatorcontrib><title>Spatial Analysis of Aquatic Ecological Health under Future Climate Change Using Extreme Gradient Boosting Tree (XGBoost) and SWAT</title><title>Water (Basel)</title><description>Climate change not only affects the water resource system but also has a great impact on the aquatic ecosystem, which is complexly linked to various organic and inorganic matter. It is difficult to simulate the current aquatic ecosystem and predict the future system due to the immensity and complexity of aquatic ecosystems; however, a spatial analysis of future aquatic ecological health is necessary if we are to adapt and take action against future climate change. In this study, we evaluated the aquatic ecological health of the Han River basin under the future climate change RCP4.5 and RCP8.5 scenarios using three indices: fish assessment index (FAI), trophic diatom index (TDI), and benthic macroinvertebrate index (BMI). For this, we developed the SWAT-XGBoost linkage algorithm, and the algorithm accuracy for the FAI, TDI, and BMI was 89.3~95.2%. In the case of the FAI and BMI assessment of aquatic ecological health, the upstream Han River was classified as a hot spot. In the case of the TDI, the downstream area of the Han River was classified as a cold spot. However, as the current TDI downstream was classified as grades D and E, continuous management is needed.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Aquatic ecosystems</subject><subject>Climate change</subject><subject>Climatic changes</subject><subject>Data collection</subject><subject>Drought</subject><subject>Environmental impact</subject><subject>Environmental monitoring</subject><subject>Fish</subject><subject>Hydrology</subject><subject>Machine learning</subject><subject>Plankton</subject><subject>Precipitation</subject><subject>River ecology</subject><subject>Stream flow</subject><subject>Water quality</subject><subject>Water resources</subject><subject>Watersheds</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUU1LAzEQXURBqT34DwJe7KE1X_t1XEs_hIKHtuhtyWYnbWS7aZMs2qP_3NSKOHOY4c17AzMviu4IHjGW48cPkpCY4iy-iG4oTtmQc04u__XXUd-5dxyC51kW45voa7kXXosGFa1ojk47ZBQqDl0AJZpI05iNlmE8B9H4LeraGiyadr6zgMaN3gkf6la0G0Brp9sNmnx6CztAMytqDa1HT8Y4f5qsLAB6eJv9AAMk2hotX4vVbXSlROOg_1t70Xo6WY3nw8XL7HlcLIaSUuKHCeOUJJjQSlUqg1RWicKU5ykRNalEhutUkjQwpAQuZZxjFgtWxRIrnNVSsF50f967t-bQgfPlu-lsuNqVDOc4pyxNaGCNzqyNaKDUrTLeChmyhp2WpgWlA15kmMckTggPgsFZIK1xzoIq9za8xR5LgsuTK-WfK-wb9Op90g</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Woo, Soyoung</creator><creator>Kim, Wonjin</creator><creator>Jung, Chunggil</creator><creator>Lee, Jiwan</creator><creator>Kim, Yongwon</creator><creator>Kim, Seongjoon</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9703-7875</orcidid><orcidid>https://orcid.org/0000-0002-5770-8873</orcidid><orcidid>https://orcid.org/0000-0001-6307-075X</orcidid><orcidid>https://orcid.org/0000-0002-2302-3999</orcidid><orcidid>https://orcid.org/0000-0002-9729-9373</orcidid><orcidid>https://orcid.org/0000-0003-3133-1745</orcidid></search><sort><creationdate>20240801</creationdate><title>Spatial Analysis of Aquatic Ecological Health under Future Climate Change Using Extreme Gradient Boosting Tree (XGBoost) and SWAT</title><author>Woo, Soyoung ; Kim, Wonjin ; Jung, Chunggil ; Lee, Jiwan ; Kim, Yongwon ; Kim, Seongjoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-634216012bfbf8e7cb6f024971ad1ba80d7c17160cce4cc59035a3b5c0f08dca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Aquatic ecosystems</topic><topic>Climate change</topic><topic>Climatic changes</topic><topic>Data collection</topic><topic>Drought</topic><topic>Environmental impact</topic><topic>Environmental monitoring</topic><topic>Fish</topic><topic>Hydrology</topic><topic>Machine learning</topic><topic>Plankton</topic><topic>Precipitation</topic><topic>River ecology</topic><topic>Stream flow</topic><topic>Water quality</topic><topic>Water resources</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woo, Soyoung</creatorcontrib><creatorcontrib>Kim, Wonjin</creatorcontrib><creatorcontrib>Jung, Chunggil</creatorcontrib><creatorcontrib>Lee, Jiwan</creatorcontrib><creatorcontrib>Kim, Yongwon</creatorcontrib><creatorcontrib>Kim, Seongjoon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woo, Soyoung</au><au>Kim, Wonjin</au><au>Jung, Chunggil</au><au>Lee, Jiwan</au><au>Kim, Yongwon</au><au>Kim, Seongjoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Analysis of Aquatic Ecological Health under Future Climate Change Using Extreme Gradient Boosting Tree (XGBoost) and SWAT</atitle><jtitle>Water (Basel)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>16</volume><issue>15</issue><spage>2085</spage><pages>2085-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Climate change not only affects the water resource system but also has a great impact on the aquatic ecosystem, which is complexly linked to various organic and inorganic matter. It is difficult to simulate the current aquatic ecosystem and predict the future system due to the immensity and complexity of aquatic ecosystems; however, a spatial analysis of future aquatic ecological health is necessary if we are to adapt and take action against future climate change. In this study, we evaluated the aquatic ecological health of the Han River basin under the future climate change RCP4.5 and RCP8.5 scenarios using three indices: fish assessment index (FAI), trophic diatom index (TDI), and benthic macroinvertebrate index (BMI). For this, we developed the SWAT-XGBoost linkage algorithm, and the algorithm accuracy for the FAI, TDI, and BMI was 89.3~95.2%. In the case of the FAI and BMI assessment of aquatic ecological health, the upstream Han River was classified as a hot spot. In the case of the TDI, the downstream area of the Han River was classified as a cold spot. However, as the current TDI downstream was classified as grades D and E, continuous management is needed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w16152085</doi><orcidid>https://orcid.org/0000-0002-9703-7875</orcidid><orcidid>https://orcid.org/0000-0002-5770-8873</orcidid><orcidid>https://orcid.org/0000-0001-6307-075X</orcidid><orcidid>https://orcid.org/0000-0002-2302-3999</orcidid><orcidid>https://orcid.org/0000-0002-9729-9373</orcidid><orcidid>https://orcid.org/0000-0003-3133-1745</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2024-08, Vol.16 (15), p.2085
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_3090923762
source Publicly Available Content Database
subjects Accuracy
Algorithms
Aquatic ecosystems
Climate change
Climatic changes
Data collection
Drought
Environmental impact
Environmental monitoring
Fish
Hydrology
Machine learning
Plankton
Precipitation
River ecology
Stream flow
Water quality
Water resources
Watersheds
title Spatial Analysis of Aquatic Ecological Health under Future Climate Change Using Extreme Gradient Boosting Tree (XGBoost) and SWAT
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A55%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Analysis%20of%20Aquatic%20Ecological%20Health%20under%20Future%20Climate%20Change%20Using%20Extreme%20Gradient%20Boosting%20Tree%20(XGBoost)%20and%20SWAT&rft.jtitle=Water%20(Basel)&rft.au=Woo,%20Soyoung&rft.date=2024-08-01&rft.volume=16&rft.issue=15&rft.spage=2085&rft.pages=2085-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w16152085&rft_dat=%3Cgale_proqu%3EA804515614%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-634216012bfbf8e7cb6f024971ad1ba80d7c17160cce4cc59035a3b5c0f08dca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3090923762&rft_id=info:pmid/&rft_galeid=A804515614&rfr_iscdi=true