Loading…
Spatial Analysis of Aquatic Ecological Health under Future Climate Change Using Extreme Gradient Boosting Tree (XGBoost) and SWAT
Climate change not only affects the water resource system but also has a great impact on the aquatic ecosystem, which is complexly linked to various organic and inorganic matter. It is difficult to simulate the current aquatic ecosystem and predict the future system due to the immensity and complexi...
Saved in:
Published in: | Water (Basel) 2024-08, Vol.16 (15), p.2085 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c221t-634216012bfbf8e7cb6f024971ad1ba80d7c17160cce4cc59035a3b5c0f08dca3 |
container_end_page | |
container_issue | 15 |
container_start_page | 2085 |
container_title | Water (Basel) |
container_volume | 16 |
creator | Woo, Soyoung Kim, Wonjin Jung, Chunggil Lee, Jiwan Kim, Yongwon Kim, Seongjoon |
description | Climate change not only affects the water resource system but also has a great impact on the aquatic ecosystem, which is complexly linked to various organic and inorganic matter. It is difficult to simulate the current aquatic ecosystem and predict the future system due to the immensity and complexity of aquatic ecosystems; however, a spatial analysis of future aquatic ecological health is necessary if we are to adapt and take action against future climate change. In this study, we evaluated the aquatic ecological health of the Han River basin under the future climate change RCP4.5 and RCP8.5 scenarios using three indices: fish assessment index (FAI), trophic diatom index (TDI), and benthic macroinvertebrate index (BMI). For this, we developed the SWAT-XGBoost linkage algorithm, and the algorithm accuracy for the FAI, TDI, and BMI was 89.3~95.2%. In the case of the FAI and BMI assessment of aquatic ecological health, the upstream Han River was classified as a hot spot. In the case of the TDI, the downstream area of the Han River was classified as a cold spot. However, as the current TDI downstream was classified as grades D and E, continuous management is needed. |
doi_str_mv | 10.3390/w16152085 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3090923762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804515614</galeid><sourcerecordid>A804515614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-634216012bfbf8e7cb6f024971ad1ba80d7c17160cce4cc59035a3b5c0f08dca3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBqT34DwJe7KE1X_t1XEs_hIKHtuhtyWYnbWS7aZMs2qP_3NSKOHOY4c17AzMviu4IHjGW48cPkpCY4iy-iG4oTtmQc04u__XXUd-5dxyC51kW45voa7kXXosGFa1ojk47ZBQqDl0AJZpI05iNlmE8B9H4LeraGiyadr6zgMaN3gkf6la0G0Brp9sNmnx6CztAMytqDa1HT8Y4f5qsLAB6eJv9AAMk2hotX4vVbXSlROOg_1t70Xo6WY3nw8XL7HlcLIaSUuKHCeOUJJjQSlUqg1RWicKU5ykRNalEhutUkjQwpAQuZZxjFgtWxRIrnNVSsF50f967t-bQgfPlu-lsuNqVDOc4pyxNaGCNzqyNaKDUrTLeChmyhp2WpgWlA15kmMckTggPgsFZIK1xzoIq9za8xR5LgsuTK-WfK-wb9Op90g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090923762</pqid></control><display><type>article</type><title>Spatial Analysis of Aquatic Ecological Health under Future Climate Change Using Extreme Gradient Boosting Tree (XGBoost) and SWAT</title><source>Publicly Available Content Database</source><creator>Woo, Soyoung ; Kim, Wonjin ; Jung, Chunggil ; Lee, Jiwan ; Kim, Yongwon ; Kim, Seongjoon</creator><creatorcontrib>Woo, Soyoung ; Kim, Wonjin ; Jung, Chunggil ; Lee, Jiwan ; Kim, Yongwon ; Kim, Seongjoon</creatorcontrib><description>Climate change not only affects the water resource system but also has a great impact on the aquatic ecosystem, which is complexly linked to various organic and inorganic matter. It is difficult to simulate the current aquatic ecosystem and predict the future system due to the immensity and complexity of aquatic ecosystems; however, a spatial analysis of future aquatic ecological health is necessary if we are to adapt and take action against future climate change. In this study, we evaluated the aquatic ecological health of the Han River basin under the future climate change RCP4.5 and RCP8.5 scenarios using three indices: fish assessment index (FAI), trophic diatom index (TDI), and benthic macroinvertebrate index (BMI). For this, we developed the SWAT-XGBoost linkage algorithm, and the algorithm accuracy for the FAI, TDI, and BMI was 89.3~95.2%. In the case of the FAI and BMI assessment of aquatic ecological health, the upstream Han River was classified as a hot spot. In the case of the TDI, the downstream area of the Han River was classified as a cold spot. However, as the current TDI downstream was classified as grades D and E, continuous management is needed.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w16152085</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Aquatic ecosystems ; Climate change ; Climatic changes ; Data collection ; Drought ; Environmental impact ; Environmental monitoring ; Fish ; Hydrology ; Machine learning ; Plankton ; Precipitation ; River ecology ; Stream flow ; Water quality ; Water resources ; Watersheds</subject><ispartof>Water (Basel), 2024-08, Vol.16 (15), p.2085</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c221t-634216012bfbf8e7cb6f024971ad1ba80d7c17160cce4cc59035a3b5c0f08dca3</cites><orcidid>0000-0002-9703-7875 ; 0000-0002-5770-8873 ; 0000-0001-6307-075X ; 0000-0002-2302-3999 ; 0000-0002-9729-9373 ; 0000-0003-3133-1745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3090923762/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3090923762?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Woo, Soyoung</creatorcontrib><creatorcontrib>Kim, Wonjin</creatorcontrib><creatorcontrib>Jung, Chunggil</creatorcontrib><creatorcontrib>Lee, Jiwan</creatorcontrib><creatorcontrib>Kim, Yongwon</creatorcontrib><creatorcontrib>Kim, Seongjoon</creatorcontrib><title>Spatial Analysis of Aquatic Ecological Health under Future Climate Change Using Extreme Gradient Boosting Tree (XGBoost) and SWAT</title><title>Water (Basel)</title><description>Climate change not only affects the water resource system but also has a great impact on the aquatic ecosystem, which is complexly linked to various organic and inorganic matter. It is difficult to simulate the current aquatic ecosystem and predict the future system due to the immensity and complexity of aquatic ecosystems; however, a spatial analysis of future aquatic ecological health is necessary if we are to adapt and take action against future climate change. In this study, we evaluated the aquatic ecological health of the Han River basin under the future climate change RCP4.5 and RCP8.5 scenarios using three indices: fish assessment index (FAI), trophic diatom index (TDI), and benthic macroinvertebrate index (BMI). For this, we developed the SWAT-XGBoost linkage algorithm, and the algorithm accuracy for the FAI, TDI, and BMI was 89.3~95.2%. In the case of the FAI and BMI assessment of aquatic ecological health, the upstream Han River was classified as a hot spot. In the case of the TDI, the downstream area of the Han River was classified as a cold spot. However, as the current TDI downstream was classified as grades D and E, continuous management is needed.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Aquatic ecosystems</subject><subject>Climate change</subject><subject>Climatic changes</subject><subject>Data collection</subject><subject>Drought</subject><subject>Environmental impact</subject><subject>Environmental monitoring</subject><subject>Fish</subject><subject>Hydrology</subject><subject>Machine learning</subject><subject>Plankton</subject><subject>Precipitation</subject><subject>River ecology</subject><subject>Stream flow</subject><subject>Water quality</subject><subject>Water resources</subject><subject>Watersheds</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUU1LAzEQXURBqT34DwJe7KE1X_t1XEs_hIKHtuhtyWYnbWS7aZMs2qP_3NSKOHOY4c17AzMviu4IHjGW48cPkpCY4iy-iG4oTtmQc04u__XXUd-5dxyC51kW45voa7kXXosGFa1ojk47ZBQqDl0AJZpI05iNlmE8B9H4LeraGiyadr6zgMaN3gkf6la0G0Brp9sNmnx6CztAMytqDa1HT8Y4f5qsLAB6eJv9AAMk2hotX4vVbXSlROOg_1t70Xo6WY3nw8XL7HlcLIaSUuKHCeOUJJjQSlUqg1RWicKU5ykRNalEhutUkjQwpAQuZZxjFgtWxRIrnNVSsF50f967t-bQgfPlu-lsuNqVDOc4pyxNaGCNzqyNaKDUrTLeChmyhp2WpgWlA15kmMckTggPgsFZIK1xzoIq9za8xR5LgsuTK-WfK-wb9Op90g</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Woo, Soyoung</creator><creator>Kim, Wonjin</creator><creator>Jung, Chunggil</creator><creator>Lee, Jiwan</creator><creator>Kim, Yongwon</creator><creator>Kim, Seongjoon</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9703-7875</orcidid><orcidid>https://orcid.org/0000-0002-5770-8873</orcidid><orcidid>https://orcid.org/0000-0001-6307-075X</orcidid><orcidid>https://orcid.org/0000-0002-2302-3999</orcidid><orcidid>https://orcid.org/0000-0002-9729-9373</orcidid><orcidid>https://orcid.org/0000-0003-3133-1745</orcidid></search><sort><creationdate>20240801</creationdate><title>Spatial Analysis of Aquatic Ecological Health under Future Climate Change Using Extreme Gradient Boosting Tree (XGBoost) and SWAT</title><author>Woo, Soyoung ; Kim, Wonjin ; Jung, Chunggil ; Lee, Jiwan ; Kim, Yongwon ; Kim, Seongjoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-634216012bfbf8e7cb6f024971ad1ba80d7c17160cce4cc59035a3b5c0f08dca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Aquatic ecosystems</topic><topic>Climate change</topic><topic>Climatic changes</topic><topic>Data collection</topic><topic>Drought</topic><topic>Environmental impact</topic><topic>Environmental monitoring</topic><topic>Fish</topic><topic>Hydrology</topic><topic>Machine learning</topic><topic>Plankton</topic><topic>Precipitation</topic><topic>River ecology</topic><topic>Stream flow</topic><topic>Water quality</topic><topic>Water resources</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woo, Soyoung</creatorcontrib><creatorcontrib>Kim, Wonjin</creatorcontrib><creatorcontrib>Jung, Chunggil</creatorcontrib><creatorcontrib>Lee, Jiwan</creatorcontrib><creatorcontrib>Kim, Yongwon</creatorcontrib><creatorcontrib>Kim, Seongjoon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woo, Soyoung</au><au>Kim, Wonjin</au><au>Jung, Chunggil</au><au>Lee, Jiwan</au><au>Kim, Yongwon</au><au>Kim, Seongjoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Analysis of Aquatic Ecological Health under Future Climate Change Using Extreme Gradient Boosting Tree (XGBoost) and SWAT</atitle><jtitle>Water (Basel)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>16</volume><issue>15</issue><spage>2085</spage><pages>2085-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Climate change not only affects the water resource system but also has a great impact on the aquatic ecosystem, which is complexly linked to various organic and inorganic matter. It is difficult to simulate the current aquatic ecosystem and predict the future system due to the immensity and complexity of aquatic ecosystems; however, a spatial analysis of future aquatic ecological health is necessary if we are to adapt and take action against future climate change. In this study, we evaluated the aquatic ecological health of the Han River basin under the future climate change RCP4.5 and RCP8.5 scenarios using three indices: fish assessment index (FAI), trophic diatom index (TDI), and benthic macroinvertebrate index (BMI). For this, we developed the SWAT-XGBoost linkage algorithm, and the algorithm accuracy for the FAI, TDI, and BMI was 89.3~95.2%. In the case of the FAI and BMI assessment of aquatic ecological health, the upstream Han River was classified as a hot spot. In the case of the TDI, the downstream area of the Han River was classified as a cold spot. However, as the current TDI downstream was classified as grades D and E, continuous management is needed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w16152085</doi><orcidid>https://orcid.org/0000-0002-9703-7875</orcidid><orcidid>https://orcid.org/0000-0002-5770-8873</orcidid><orcidid>https://orcid.org/0000-0001-6307-075X</orcidid><orcidid>https://orcid.org/0000-0002-2302-3999</orcidid><orcidid>https://orcid.org/0000-0002-9729-9373</orcidid><orcidid>https://orcid.org/0000-0003-3133-1745</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2024-08, Vol.16 (15), p.2085 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_journals_3090923762 |
source | Publicly Available Content Database |
subjects | Accuracy Algorithms Aquatic ecosystems Climate change Climatic changes Data collection Drought Environmental impact Environmental monitoring Fish Hydrology Machine learning Plankton Precipitation River ecology Stream flow Water quality Water resources Watersheds |
title | Spatial Analysis of Aquatic Ecological Health under Future Climate Change Using Extreme Gradient Boosting Tree (XGBoost) and SWAT |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A55%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Analysis%20of%20Aquatic%20Ecological%20Health%20under%20Future%20Climate%20Change%20Using%20Extreme%20Gradient%20Boosting%20Tree%20(XGBoost)%20and%20SWAT&rft.jtitle=Water%20(Basel)&rft.au=Woo,%20Soyoung&rft.date=2024-08-01&rft.volume=16&rft.issue=15&rft.spage=2085&rft.pages=2085-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w16152085&rft_dat=%3Cgale_proqu%3EA804515614%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-634216012bfbf8e7cb6f024971ad1ba80d7c17160cce4cc59035a3b5c0f08dca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3090923762&rft_id=info:pmid/&rft_galeid=A804515614&rfr_iscdi=true |