Loading…

Comparative Studies on VS2 Bilayer and VS2/Graphene Heterostructure as the Anodes of Li Ion Battery

Due to the development of various mobile electronic devices, such as electric vehicles, rechargeable ion batteries are becoming more and more important. However, the current commercial lithium-ion batteries have obvious defects, including poor safety from Li dendrite and flammable electrolyte, quick...

Full description

Saved in:
Bibliographic Details
Published in:Key engineering materials 2021-07, Vol.894, p.61-66
Main Author: Dong, Rui Zhi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the development of various mobile electronic devices, such as electric vehicles, rechargeable ion batteries are becoming more and more important. However, the current commercial lithium-ion batteries have obvious defects, including poor safety from Li dendrite and flammable electrolyte, quick capacity loss and low charging and discharging rate. It is very important to find a better two-dimensional material as the anode of the battery to recover the disadvantages. In this paper, first principles calculations are used to explore the performances of VS2 bilayer and VS2 / graphene heterostructure as the anodes of Li ion batteries. Based on the calculation of the valences, binding energy, intercalation voltage, charge transfer and diffusion barrier of Li, it is found that the latter can be used as a better anode material from the perspective of insertion voltage and binding energy. At the same time, the former one is better in terms of diffusion barrier. Our study provides a comprehensive understanding on VS2 based 2D anodes.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.894.61