Loading…

Individual identification based on chaotic electrocardiogram signals during muscular exercise

An electrocardiogram (ECG) records changes in the electric potential of cardiac cells using a noninvasive method. Previous studies have shown that each person's cardiac signal possesses unique characteristics. Thus, researchers have attempted to use ECG signals for personal identification. Howe...

Full description

Saved in:
Bibliographic Details
Published in:IET biometrics 2014-12, Vol.3 (4), p.257-266
Main Authors: Lin, Shyan-Lung, Chen, Ching-Kun, Lin, Chun-Liang, Yang, Wen-Chan, Chiang, Cheng-Tang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An electrocardiogram (ECG) records changes in the electric potential of cardiac cells using a noninvasive method. Previous studies have shown that each person's cardiac signal possesses unique characteristics. Thus, researchers have attempted to use ECG signals for personal identification. However, most studies verify results using ECG signals taken from databases which are obtained from subjects under the condition of rest. Therefore, the extraction and analysis of a subject's ECG typically occurs in the resting state. This study presents experiments that involve recording ECG information after the heart rate of the subjects was increased through exercise. This study adopts the root mean square value, nonlinear Lyapunov exponent, and correlation dimension to analyse ECG data, and uses a support vector machine (SVM) to classify and identify the best combination and the most appropriate kernel function of a SVM. Results show that the successful recognition rate exceeds 80% when using the nonlinear SVM with a polynomial kernel function. This study confirms the existence of unique ECG features in each person. Even in the condition of exercise, chaotic theory can be used to extract specific biological characteristics, confirming the feasibility of using ECG signals for biometric verification.
ISSN:2047-4938
2047-4946
2047-4946
DOI:10.1049/iet-bmt.2013.0014