Loading…
Low-jitter DLL applied for two-segment TDC
A low-jitter delay-locked loop (DLL) for high-resolution time-to-digital converter (TDC) is proposed in this study. The generated high accurate and low-jitter outputs with uniformly distributed multiphase clocks directly from the voltage-controlled delay line (VCDL) in DLL are applied to two-segment...
Saved in:
Published in: | IET circuits, devices & systems devices & systems, 2018-01, Vol.12 (1), p.17-24 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A low-jitter delay-locked loop (DLL) for high-resolution time-to-digital converter (TDC) is proposed in this study. The generated high accurate and low-jitter outputs with uniformly distributed multiphase clocks directly from the voltage-controlled delay line (VCDL) in DLL are applied to two-segment TDC. For reducing the static phase offset in locked state, the charge pump with interior feedback loop is used to achieve a better current matching between the charging and discharging currents. An improved phase detector as well as a differential VCDL excellent in linearity property and noise suppression is utilised for reducing the output clock jitter. Fabricated by TSMC 0.35 μm complementary metal–oxide–semiconductor process, the measurement results show that DLL's frequency locking range is 60–240 MHz, the output clock jitters at 125 MHz are 3.6 ps for root mean square and 35.07 ps for peak-to-peak. By clock period counting and eight-phase discrimination, the resolution of |
---|---|
ISSN: | 1751-858X 1751-8598 1751-8598 |
DOI: | 10.1049/iet-cds.2016.0342 |