Loading…

Study on the Influence of GDL Porosity Distribution Variation on PEMFC Performance Under Assembly Pressure

ABSTRACT The porosity of the gas diffusion layer (GDL) significantly impacts the performance of proton exchange membrane fuel cells (PEMFCs). Assembly pressure in PEMFCs leads to GDL deformation and alterations in porosity distribution. This study integrated a three‐dimensional (3D) GDL deformation...

Full description

Saved in:
Bibliographic Details
Published in:Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2024-08, Vol.24 (4), p.n/a
Main Authors: Cao, Yifei, Xing, Yanfeng, Cao, Juyong, Zhang, Xiaobing, Peng, Linfa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2022-bbef53ba1c3f21653204b5ad699239198b56007ef87e956d37f46313f89566c3
container_end_page n/a
container_issue 4
container_start_page
container_title Fuel cells (Weinheim an der Bergstrasse, Germany)
container_volume 24
creator Cao, Yifei
Xing, Yanfeng
Cao, Juyong
Zhang, Xiaobing
Peng, Linfa
description ABSTRACT The porosity of the gas diffusion layer (GDL) significantly impacts the performance of proton exchange membrane fuel cells (PEMFCs). Assembly pressure in PEMFCs leads to GDL deformation and alterations in porosity distribution. This study integrated a three‐dimensional (3D) GDL deformation model with a 3D two‐phase PEMFC model, employing a four‐term Fourier series model to optimize the fitting of the GDL porosity distribution curve. The approach quantitatively assessed the impact of GDL porosity distribution under assembly pressure on PEMFC performance. Results reveal an arched porosity distribution in GDL, peaking in the middle of low channels adjacent to ribs. High porosity enhances oxygen and heat conduction but excessive porosity may cause uneven current density distribution, hindering GDL drainage. Furthermore, the analysis compares performances at various GDL compression ratios and thicknesses, showing an initial rise then fall in current density with increasing pressure. This represents a trade‐off between the adverse impact of GDL compression on mass transfer losses and the favorable impact of reduced ohmic losses. At the optimal pressure, the current density is 3% higher than neighboring values at the same potential, and within the optimal GDL thickness range, the current density error remains below 1%.
doi_str_mv 10.1002/fuce.202400102
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092390806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092390806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2022-bbef53ba1c3f21653204b5ad699239198b56007ef87e956d37f46313f89566c3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFavnhc8p-5HskmOJba1UDFg63XZTWYxJU3qboLk37uxUo_CwMzA887Hi9A9JTNKCHs0fQEzRlhICCXsAk2ooFEgkii8PNehuEY3zu09EidJOEH7t64vB9w2uPsAvG5M3UNTAG4NXj1tcN7a1lXdgJ8q19lK913l0XdlK_VT-cgXL8sM52BNaw9q1O6aEiyeOwcHXQ84t-Bcb-EWXRlVO7j7zVO0XS622XOweV2ts_kmKPzxLNAaTMS1ogU3jIqIMxLqSJUiTRlPaZroSBASg0liSCNR8tiEglNuEt-Jgk_Rw2ns0bafPbhO7tveNn6j5GQcQRIiPDU7UYV_0Fkw8mirg7KDpESOdsrRTnm20wvSk-CrqmH4h5bLXbb4034DnNh4bA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092390806</pqid></control><display><type>article</type><title>Study on the Influence of GDL Porosity Distribution Variation on PEMFC Performance Under Assembly Pressure</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Cao, Yifei ; Xing, Yanfeng ; Cao, Juyong ; Zhang, Xiaobing ; Peng, Linfa</creator><creatorcontrib>Cao, Yifei ; Xing, Yanfeng ; Cao, Juyong ; Zhang, Xiaobing ; Peng, Linfa</creatorcontrib><description>ABSTRACT The porosity of the gas diffusion layer (GDL) significantly impacts the performance of proton exchange membrane fuel cells (PEMFCs). Assembly pressure in PEMFCs leads to GDL deformation and alterations in porosity distribution. This study integrated a three‐dimensional (3D) GDL deformation model with a 3D two‐phase PEMFC model, employing a four‐term Fourier series model to optimize the fitting of the GDL porosity distribution curve. The approach quantitatively assessed the impact of GDL porosity distribution under assembly pressure on PEMFC performance. Results reveal an arched porosity distribution in GDL, peaking in the middle of low channels adjacent to ribs. High porosity enhances oxygen and heat conduction but excessive porosity may cause uneven current density distribution, hindering GDL drainage. Furthermore, the analysis compares performances at various GDL compression ratios and thicknesses, showing an initial rise then fall in current density with increasing pressure. This represents a trade‐off between the adverse impact of GDL compression on mass transfer losses and the favorable impact of reduced ohmic losses. At the optimal pressure, the current density is 3% higher than neighboring values at the same potential, and within the optimal GDL thickness range, the current density error remains below 1%.</description><identifier>ISSN: 1615-6846</identifier><identifier>EISSN: 1615-6854</identifier><identifier>DOI: 10.1002/fuce.202400102</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Assembly ; assembly pressure ; Compression ratio ; Conduction heating ; Conductive heat transfer ; Current density ; Curve fitting ; Density distribution ; Diffusion layers ; Drainage channels ; Fourier series ; gas diffusion layer (GDL) ; Gaseous diffusion ; Impact analysis ; Mass transfer ; Optimization ; permeability ; Porosity ; proton exchange membrane fuel cell (PEMFC) ; Proton exchange membrane fuel cells ; Thickness</subject><ispartof>Fuel cells (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.24 (4), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2022-bbef53ba1c3f21653204b5ad699239198b56007ef87e956d37f46313f89566c3</cites><orcidid>0009-0003-7114-5725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cao, Yifei</creatorcontrib><creatorcontrib>Xing, Yanfeng</creatorcontrib><creatorcontrib>Cao, Juyong</creatorcontrib><creatorcontrib>Zhang, Xiaobing</creatorcontrib><creatorcontrib>Peng, Linfa</creatorcontrib><title>Study on the Influence of GDL Porosity Distribution Variation on PEMFC Performance Under Assembly Pressure</title><title>Fuel cells (Weinheim an der Bergstrasse, Germany)</title><description>ABSTRACT The porosity of the gas diffusion layer (GDL) significantly impacts the performance of proton exchange membrane fuel cells (PEMFCs). Assembly pressure in PEMFCs leads to GDL deformation and alterations in porosity distribution. This study integrated a three‐dimensional (3D) GDL deformation model with a 3D two‐phase PEMFC model, employing a four‐term Fourier series model to optimize the fitting of the GDL porosity distribution curve. The approach quantitatively assessed the impact of GDL porosity distribution under assembly pressure on PEMFC performance. Results reveal an arched porosity distribution in GDL, peaking in the middle of low channels adjacent to ribs. High porosity enhances oxygen and heat conduction but excessive porosity may cause uneven current density distribution, hindering GDL drainage. Furthermore, the analysis compares performances at various GDL compression ratios and thicknesses, showing an initial rise then fall in current density with increasing pressure. This represents a trade‐off between the adverse impact of GDL compression on mass transfer losses and the favorable impact of reduced ohmic losses. At the optimal pressure, the current density is 3% higher than neighboring values at the same potential, and within the optimal GDL thickness range, the current density error remains below 1%.</description><subject>Assembly</subject><subject>assembly pressure</subject><subject>Compression ratio</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Current density</subject><subject>Curve fitting</subject><subject>Density distribution</subject><subject>Diffusion layers</subject><subject>Drainage channels</subject><subject>Fourier series</subject><subject>gas diffusion layer (GDL)</subject><subject>Gaseous diffusion</subject><subject>Impact analysis</subject><subject>Mass transfer</subject><subject>Optimization</subject><subject>permeability</subject><subject>Porosity</subject><subject>proton exchange membrane fuel cell (PEMFC)</subject><subject>Proton exchange membrane fuel cells</subject><subject>Thickness</subject><issn>1615-6846</issn><issn>1615-6854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFavnhc8p-5HskmOJba1UDFg63XZTWYxJU3qboLk37uxUo_CwMzA887Hi9A9JTNKCHs0fQEzRlhICCXsAk2ooFEgkii8PNehuEY3zu09EidJOEH7t64vB9w2uPsAvG5M3UNTAG4NXj1tcN7a1lXdgJ8q19lK913l0XdlK_VT-cgXL8sM52BNaw9q1O6aEiyeOwcHXQ84t-Bcb-EWXRlVO7j7zVO0XS622XOweV2ts_kmKPzxLNAaTMS1ogU3jIqIMxLqSJUiTRlPaZroSBASg0liSCNR8tiEglNuEt-Jgk_Rw2ns0bafPbhO7tveNn6j5GQcQRIiPDU7UYV_0Fkw8mirg7KDpESOdsrRTnm20wvSk-CrqmH4h5bLXbb4034DnNh4bA</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Cao, Yifei</creator><creator>Xing, Yanfeng</creator><creator>Cao, Juyong</creator><creator>Zhang, Xiaobing</creator><creator>Peng, Linfa</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0003-7114-5725</orcidid></search><sort><creationdate>202408</creationdate><title>Study on the Influence of GDL Porosity Distribution Variation on PEMFC Performance Under Assembly Pressure</title><author>Cao, Yifei ; Xing, Yanfeng ; Cao, Juyong ; Zhang, Xiaobing ; Peng, Linfa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2022-bbef53ba1c3f21653204b5ad699239198b56007ef87e956d37f46313f89566c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Assembly</topic><topic>assembly pressure</topic><topic>Compression ratio</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Current density</topic><topic>Curve fitting</topic><topic>Density distribution</topic><topic>Diffusion layers</topic><topic>Drainage channels</topic><topic>Fourier series</topic><topic>gas diffusion layer (GDL)</topic><topic>Gaseous diffusion</topic><topic>Impact analysis</topic><topic>Mass transfer</topic><topic>Optimization</topic><topic>permeability</topic><topic>Porosity</topic><topic>proton exchange membrane fuel cell (PEMFC)</topic><topic>Proton exchange membrane fuel cells</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Yifei</creatorcontrib><creatorcontrib>Xing, Yanfeng</creatorcontrib><creatorcontrib>Cao, Juyong</creatorcontrib><creatorcontrib>Zhang, Xiaobing</creatorcontrib><creatorcontrib>Peng, Linfa</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Yifei</au><au>Xing, Yanfeng</au><au>Cao, Juyong</au><au>Zhang, Xiaobing</au><au>Peng, Linfa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the Influence of GDL Porosity Distribution Variation on PEMFC Performance Under Assembly Pressure</atitle><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-08</date><risdate>2024</risdate><volume>24</volume><issue>4</issue><epage>n/a</epage><issn>1615-6846</issn><eissn>1615-6854</eissn><abstract>ABSTRACT The porosity of the gas diffusion layer (GDL) significantly impacts the performance of proton exchange membrane fuel cells (PEMFCs). Assembly pressure in PEMFCs leads to GDL deformation and alterations in porosity distribution. This study integrated a three‐dimensional (3D) GDL deformation model with a 3D two‐phase PEMFC model, employing a four‐term Fourier series model to optimize the fitting of the GDL porosity distribution curve. The approach quantitatively assessed the impact of GDL porosity distribution under assembly pressure on PEMFC performance. Results reveal an arched porosity distribution in GDL, peaking in the middle of low channels adjacent to ribs. High porosity enhances oxygen and heat conduction but excessive porosity may cause uneven current density distribution, hindering GDL drainage. Furthermore, the analysis compares performances at various GDL compression ratios and thicknesses, showing an initial rise then fall in current density with increasing pressure. This represents a trade‐off between the adverse impact of GDL compression on mass transfer losses and the favorable impact of reduced ohmic losses. At the optimal pressure, the current density is 3% higher than neighboring values at the same potential, and within the optimal GDL thickness range, the current density error remains below 1%.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/fuce.202400102</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0003-7114-5725</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1615-6846
ispartof Fuel cells (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.24 (4), p.n/a
issn 1615-6846
1615-6854
language eng
recordid cdi_proquest_journals_3092390806
source Wiley-Blackwell Read & Publish Collection
subjects Assembly
assembly pressure
Compression ratio
Conduction heating
Conductive heat transfer
Current density
Curve fitting
Density distribution
Diffusion layers
Drainage channels
Fourier series
gas diffusion layer (GDL)
Gaseous diffusion
Impact analysis
Mass transfer
Optimization
permeability
Porosity
proton exchange membrane fuel cell (PEMFC)
Proton exchange membrane fuel cells
Thickness
title Study on the Influence of GDL Porosity Distribution Variation on PEMFC Performance Under Assembly Pressure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20Influence%20of%20GDL%20Porosity%20Distribution%20Variation%20on%20PEMFC%20Performance%20Under%20Assembly%20Pressure&rft.jtitle=Fuel%20cells%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Cao,%20Yifei&rft.date=2024-08&rft.volume=24&rft.issue=4&rft.epage=n/a&rft.issn=1615-6846&rft.eissn=1615-6854&rft_id=info:doi/10.1002/fuce.202400102&rft_dat=%3Cproquest_cross%3E3092390806%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2022-bbef53ba1c3f21653204b5ad699239198b56007ef87e956d37f46313f89566c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3092390806&rft_id=info:pmid/&rfr_iscdi=true