Loading…
Study on the Influence of GDL Porosity Distribution Variation on PEMFC Performance Under Assembly Pressure
ABSTRACT The porosity of the gas diffusion layer (GDL) significantly impacts the performance of proton exchange membrane fuel cells (PEMFCs). Assembly pressure in PEMFCs leads to GDL deformation and alterations in porosity distribution. This study integrated a three‐dimensional (3D) GDL deformation...
Saved in:
Published in: | Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2024-08, Vol.24 (4), p.n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2022-bbef53ba1c3f21653204b5ad699239198b56007ef87e956d37f46313f89566c3 |
container_end_page | n/a |
container_issue | 4 |
container_start_page | |
container_title | Fuel cells (Weinheim an der Bergstrasse, Germany) |
container_volume | 24 |
creator | Cao, Yifei Xing, Yanfeng Cao, Juyong Zhang, Xiaobing Peng, Linfa |
description | ABSTRACT
The porosity of the gas diffusion layer (GDL) significantly impacts the performance of proton exchange membrane fuel cells (PEMFCs). Assembly pressure in PEMFCs leads to GDL deformation and alterations in porosity distribution. This study integrated a three‐dimensional (3D) GDL deformation model with a 3D two‐phase PEMFC model, employing a four‐term Fourier series model to optimize the fitting of the GDL porosity distribution curve. The approach quantitatively assessed the impact of GDL porosity distribution under assembly pressure on PEMFC performance. Results reveal an arched porosity distribution in GDL, peaking in the middle of low channels adjacent to ribs. High porosity enhances oxygen and heat conduction but excessive porosity may cause uneven current density distribution, hindering GDL drainage. Furthermore, the analysis compares performances at various GDL compression ratios and thicknesses, showing an initial rise then fall in current density with increasing pressure. This represents a trade‐off between the adverse impact of GDL compression on mass transfer losses and the favorable impact of reduced ohmic losses. At the optimal pressure, the current density is 3% higher than neighboring values at the same potential, and within the optimal GDL thickness range, the current density error remains below 1%. |
doi_str_mv | 10.1002/fuce.202400102 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092390806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092390806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2022-bbef53ba1c3f21653204b5ad699239198b56007ef87e956d37f46313f89566c3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFavnhc8p-5HskmOJba1UDFg63XZTWYxJU3qboLk37uxUo_CwMzA887Hi9A9JTNKCHs0fQEzRlhICCXsAk2ooFEgkii8PNehuEY3zu09EidJOEH7t64vB9w2uPsAvG5M3UNTAG4NXj1tcN7a1lXdgJ8q19lK913l0XdlK_VT-cgXL8sM52BNaw9q1O6aEiyeOwcHXQ84t-Bcb-EWXRlVO7j7zVO0XS622XOweV2ts_kmKPzxLNAaTMS1ogU3jIqIMxLqSJUiTRlPaZroSBASg0liSCNR8tiEglNuEt-Jgk_Rw2ns0bafPbhO7tveNn6j5GQcQRIiPDU7UYV_0Fkw8mirg7KDpESOdsrRTnm20wvSk-CrqmH4h5bLXbb4034DnNh4bA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092390806</pqid></control><display><type>article</type><title>Study on the Influence of GDL Porosity Distribution Variation on PEMFC Performance Under Assembly Pressure</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Cao, Yifei ; Xing, Yanfeng ; Cao, Juyong ; Zhang, Xiaobing ; Peng, Linfa</creator><creatorcontrib>Cao, Yifei ; Xing, Yanfeng ; Cao, Juyong ; Zhang, Xiaobing ; Peng, Linfa</creatorcontrib><description>ABSTRACT
The porosity of the gas diffusion layer (GDL) significantly impacts the performance of proton exchange membrane fuel cells (PEMFCs). Assembly pressure in PEMFCs leads to GDL deformation and alterations in porosity distribution. This study integrated a three‐dimensional (3D) GDL deformation model with a 3D two‐phase PEMFC model, employing a four‐term Fourier series model to optimize the fitting of the GDL porosity distribution curve. The approach quantitatively assessed the impact of GDL porosity distribution under assembly pressure on PEMFC performance. Results reveal an arched porosity distribution in GDL, peaking in the middle of low channels adjacent to ribs. High porosity enhances oxygen and heat conduction but excessive porosity may cause uneven current density distribution, hindering GDL drainage. Furthermore, the analysis compares performances at various GDL compression ratios and thicknesses, showing an initial rise then fall in current density with increasing pressure. This represents a trade‐off between the adverse impact of GDL compression on mass transfer losses and the favorable impact of reduced ohmic losses. At the optimal pressure, the current density is 3% higher than neighboring values at the same potential, and within the optimal GDL thickness range, the current density error remains below 1%.</description><identifier>ISSN: 1615-6846</identifier><identifier>EISSN: 1615-6854</identifier><identifier>DOI: 10.1002/fuce.202400102</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Assembly ; assembly pressure ; Compression ratio ; Conduction heating ; Conductive heat transfer ; Current density ; Curve fitting ; Density distribution ; Diffusion layers ; Drainage channels ; Fourier series ; gas diffusion layer (GDL) ; Gaseous diffusion ; Impact analysis ; Mass transfer ; Optimization ; permeability ; Porosity ; proton exchange membrane fuel cell (PEMFC) ; Proton exchange membrane fuel cells ; Thickness</subject><ispartof>Fuel cells (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.24 (4), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2022-bbef53ba1c3f21653204b5ad699239198b56007ef87e956d37f46313f89566c3</cites><orcidid>0009-0003-7114-5725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cao, Yifei</creatorcontrib><creatorcontrib>Xing, Yanfeng</creatorcontrib><creatorcontrib>Cao, Juyong</creatorcontrib><creatorcontrib>Zhang, Xiaobing</creatorcontrib><creatorcontrib>Peng, Linfa</creatorcontrib><title>Study on the Influence of GDL Porosity Distribution Variation on PEMFC Performance Under Assembly Pressure</title><title>Fuel cells (Weinheim an der Bergstrasse, Germany)</title><description>ABSTRACT
The porosity of the gas diffusion layer (GDL) significantly impacts the performance of proton exchange membrane fuel cells (PEMFCs). Assembly pressure in PEMFCs leads to GDL deformation and alterations in porosity distribution. This study integrated a three‐dimensional (3D) GDL deformation model with a 3D two‐phase PEMFC model, employing a four‐term Fourier series model to optimize the fitting of the GDL porosity distribution curve. The approach quantitatively assessed the impact of GDL porosity distribution under assembly pressure on PEMFC performance. Results reveal an arched porosity distribution in GDL, peaking in the middle of low channels adjacent to ribs. High porosity enhances oxygen and heat conduction but excessive porosity may cause uneven current density distribution, hindering GDL drainage. Furthermore, the analysis compares performances at various GDL compression ratios and thicknesses, showing an initial rise then fall in current density with increasing pressure. This represents a trade‐off between the adverse impact of GDL compression on mass transfer losses and the favorable impact of reduced ohmic losses. At the optimal pressure, the current density is 3% higher than neighboring values at the same potential, and within the optimal GDL thickness range, the current density error remains below 1%.</description><subject>Assembly</subject><subject>assembly pressure</subject><subject>Compression ratio</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Current density</subject><subject>Curve fitting</subject><subject>Density distribution</subject><subject>Diffusion layers</subject><subject>Drainage channels</subject><subject>Fourier series</subject><subject>gas diffusion layer (GDL)</subject><subject>Gaseous diffusion</subject><subject>Impact analysis</subject><subject>Mass transfer</subject><subject>Optimization</subject><subject>permeability</subject><subject>Porosity</subject><subject>proton exchange membrane fuel cell (PEMFC)</subject><subject>Proton exchange membrane fuel cells</subject><subject>Thickness</subject><issn>1615-6846</issn><issn>1615-6854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFavnhc8p-5HskmOJba1UDFg63XZTWYxJU3qboLk37uxUo_CwMzA887Hi9A9JTNKCHs0fQEzRlhICCXsAk2ooFEgkii8PNehuEY3zu09EidJOEH7t64vB9w2uPsAvG5M3UNTAG4NXj1tcN7a1lXdgJ8q19lK913l0XdlK_VT-cgXL8sM52BNaw9q1O6aEiyeOwcHXQ84t-Bcb-EWXRlVO7j7zVO0XS622XOweV2ts_kmKPzxLNAaTMS1ogU3jIqIMxLqSJUiTRlPaZroSBASg0liSCNR8tiEglNuEt-Jgk_Rw2ns0bafPbhO7tveNn6j5GQcQRIiPDU7UYV_0Fkw8mirg7KDpESOdsrRTnm20wvSk-CrqmH4h5bLXbb4034DnNh4bA</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Cao, Yifei</creator><creator>Xing, Yanfeng</creator><creator>Cao, Juyong</creator><creator>Zhang, Xiaobing</creator><creator>Peng, Linfa</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0003-7114-5725</orcidid></search><sort><creationdate>202408</creationdate><title>Study on the Influence of GDL Porosity Distribution Variation on PEMFC Performance Under Assembly Pressure</title><author>Cao, Yifei ; Xing, Yanfeng ; Cao, Juyong ; Zhang, Xiaobing ; Peng, Linfa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2022-bbef53ba1c3f21653204b5ad699239198b56007ef87e956d37f46313f89566c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Assembly</topic><topic>assembly pressure</topic><topic>Compression ratio</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Current density</topic><topic>Curve fitting</topic><topic>Density distribution</topic><topic>Diffusion layers</topic><topic>Drainage channels</topic><topic>Fourier series</topic><topic>gas diffusion layer (GDL)</topic><topic>Gaseous diffusion</topic><topic>Impact analysis</topic><topic>Mass transfer</topic><topic>Optimization</topic><topic>permeability</topic><topic>Porosity</topic><topic>proton exchange membrane fuel cell (PEMFC)</topic><topic>Proton exchange membrane fuel cells</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Yifei</creatorcontrib><creatorcontrib>Xing, Yanfeng</creatorcontrib><creatorcontrib>Cao, Juyong</creatorcontrib><creatorcontrib>Zhang, Xiaobing</creatorcontrib><creatorcontrib>Peng, Linfa</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Yifei</au><au>Xing, Yanfeng</au><au>Cao, Juyong</au><au>Zhang, Xiaobing</au><au>Peng, Linfa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the Influence of GDL Porosity Distribution Variation on PEMFC Performance Under Assembly Pressure</atitle><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-08</date><risdate>2024</risdate><volume>24</volume><issue>4</issue><epage>n/a</epage><issn>1615-6846</issn><eissn>1615-6854</eissn><abstract>ABSTRACT
The porosity of the gas diffusion layer (GDL) significantly impacts the performance of proton exchange membrane fuel cells (PEMFCs). Assembly pressure in PEMFCs leads to GDL deformation and alterations in porosity distribution. This study integrated a three‐dimensional (3D) GDL deformation model with a 3D two‐phase PEMFC model, employing a four‐term Fourier series model to optimize the fitting of the GDL porosity distribution curve. The approach quantitatively assessed the impact of GDL porosity distribution under assembly pressure on PEMFC performance. Results reveal an arched porosity distribution in GDL, peaking in the middle of low channels adjacent to ribs. High porosity enhances oxygen and heat conduction but excessive porosity may cause uneven current density distribution, hindering GDL drainage. Furthermore, the analysis compares performances at various GDL compression ratios and thicknesses, showing an initial rise then fall in current density with increasing pressure. This represents a trade‐off between the adverse impact of GDL compression on mass transfer losses and the favorable impact of reduced ohmic losses. At the optimal pressure, the current density is 3% higher than neighboring values at the same potential, and within the optimal GDL thickness range, the current density error remains below 1%.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/fuce.202400102</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0003-7114-5725</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-6846 |
ispartof | Fuel cells (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.24 (4), p.n/a |
issn | 1615-6846 1615-6854 |
language | eng |
recordid | cdi_proquest_journals_3092390806 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Assembly assembly pressure Compression ratio Conduction heating Conductive heat transfer Current density Curve fitting Density distribution Diffusion layers Drainage channels Fourier series gas diffusion layer (GDL) Gaseous diffusion Impact analysis Mass transfer Optimization permeability Porosity proton exchange membrane fuel cell (PEMFC) Proton exchange membrane fuel cells Thickness |
title | Study on the Influence of GDL Porosity Distribution Variation on PEMFC Performance Under Assembly Pressure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20Influence%20of%20GDL%20Porosity%20Distribution%20Variation%20on%20PEMFC%20Performance%20Under%20Assembly%20Pressure&rft.jtitle=Fuel%20cells%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Cao,%20Yifei&rft.date=2024-08&rft.volume=24&rft.issue=4&rft.epage=n/a&rft.issn=1615-6846&rft.eissn=1615-6854&rft_id=info:doi/10.1002/fuce.202400102&rft_dat=%3Cproquest_cross%3E3092390806%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2022-bbef53ba1c3f21653204b5ad699239198b56007ef87e956d37f46313f89566c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3092390806&rft_id=info:pmid/&rfr_iscdi=true |