Loading…
Segmentation-driven feature-preserving mesh denoising
Feature-preserving mesh denoising has received noticeable attention in visual media, with the aim of recovering high-fidelity, clean mesh shapes from the ones that are contaminated by noise. Existing denoising methods often design smaller weights for anisotropic surfaces and larger weights for isotr...
Saved in:
Published in: | The Visual computer 2024-09, Vol.40 (9), p.6201-6217 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-2ecb66195d33c3e34351a1698a41c20abe13d411600389964a56e87ce25f3db43 |
container_end_page | 6217 |
container_issue | 9 |
container_start_page | 6201 |
container_title | The Visual computer |
container_volume | 40 |
creator | Wang, Weijia Pan, Wei Dai, Chaofan Dazeley, Richard Wei, Lei Rolfe, Bernard Lu, Xuequan |
description | Feature-preserving mesh denoising has received noticeable attention in visual media, with the aim of recovering high-fidelity, clean mesh shapes from the ones that are contaminated by noise. Existing denoising methods often design smaller weights for anisotropic surfaces and larger weights for isotropic surfaces in order to preserve sharp features, such as edges or corners, on the mesh shapes. However, they often disregard the fact that such small weights on anisotropic surfaces still pose negative impacts on the denoising outcomes and detail preservation results on the shapes. In this paper, we propose a novel segmentation-driven mesh denoising method which performs region-wise denoising, and thus avoids the disturbance of anisotropic neighbour faces for better feature preservation results. Also, our backbone can be easily embedded into commonly used mesh denoising frameworks. Extensive experiments have demonstrated that our method can enhance the denoising results on a wide range of synthetic and real mesh models, both quantitatively and visually. |
doi_str_mv | 10.1007/s00371-023-03161-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092489548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092489548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-2ecb66195d33c3e34351a1698a41c20abe13d411600389964a56e87ce25f3db43</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4KrgOpqTk-tSijcQXKjrkM6cqVPsTE2mLb690RHcuTr88F8OH2PnIC5BCHuVhUALXEjkAsEA3x-wCSiUXCLoQzYRYB2X1vljdpLzShRtlZ8w_UzLNXVDHNq-43Vqd9TNGorDNhHfJMqUdm23nK0pv81q6vo2F3nKjpr4nuns907Z6-3Ny_yePz7dPcyvH3klrRi4pGphDHhdI1ZIqFBDBONdVFBJERcEWCsAU7533hsVtSFnK5K6wXqhcMouxt5N6j-2lIew6repK5MBhZfKea1cccnRVaU-50RN2KR2HdNnABG-8YQRTyh4wg-esC8hHEO5mLslpb_qf1Jf9PdngA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092489548</pqid></control><display><type>article</type><title>Segmentation-driven feature-preserving mesh denoising</title><source>Springer Link</source><creator>Wang, Weijia ; Pan, Wei ; Dai, Chaofan ; Dazeley, Richard ; Wei, Lei ; Rolfe, Bernard ; Lu, Xuequan</creator><creatorcontrib>Wang, Weijia ; Pan, Wei ; Dai, Chaofan ; Dazeley, Richard ; Wei, Lei ; Rolfe, Bernard ; Lu, Xuequan</creatorcontrib><description>Feature-preserving mesh denoising has received noticeable attention in visual media, with the aim of recovering high-fidelity, clean mesh shapes from the ones that are contaminated by noise. Existing denoising methods often design smaller weights for anisotropic surfaces and larger weights for isotropic surfaces in order to preserve sharp features, such as edges or corners, on the mesh shapes. However, they often disregard the fact that such small weights on anisotropic surfaces still pose negative impacts on the denoising outcomes and detail preservation results on the shapes. In this paper, we propose a novel segmentation-driven mesh denoising method which performs region-wise denoising, and thus avoids the disturbance of anisotropic neighbour faces for better feature preservation results. Also, our backbone can be easily embedded into commonly used mesh denoising frameworks. Extensive experiments have demonstrated that our method can enhance the denoising results on a wide range of synthetic and real mesh models, both quantitatively and visually.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-023-03161-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Computer Graphics ; Computer Science ; Image Processing and Computer Vision ; Methods ; Noise reduction ; Original Article ; Segmentation ; Semantics</subject><ispartof>The Visual computer, 2024-09, Vol.40 (9), p.6201-6217</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-2ecb66195d33c3e34351a1698a41c20abe13d411600389964a56e87ce25f3db43</cites><orcidid>0000-0003-0959-408X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Weijia</creatorcontrib><creatorcontrib>Pan, Wei</creatorcontrib><creatorcontrib>Dai, Chaofan</creatorcontrib><creatorcontrib>Dazeley, Richard</creatorcontrib><creatorcontrib>Wei, Lei</creatorcontrib><creatorcontrib>Rolfe, Bernard</creatorcontrib><creatorcontrib>Lu, Xuequan</creatorcontrib><title>Segmentation-driven feature-preserving mesh denoising</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Feature-preserving mesh denoising has received noticeable attention in visual media, with the aim of recovering high-fidelity, clean mesh shapes from the ones that are contaminated by noise. Existing denoising methods often design smaller weights for anisotropic surfaces and larger weights for isotropic surfaces in order to preserve sharp features, such as edges or corners, on the mesh shapes. However, they often disregard the fact that such small weights on anisotropic surfaces still pose negative impacts on the denoising outcomes and detail preservation results on the shapes. In this paper, we propose a novel segmentation-driven mesh denoising method which performs region-wise denoising, and thus avoids the disturbance of anisotropic neighbour faces for better feature preservation results. Also, our backbone can be easily embedded into commonly used mesh denoising frameworks. Extensive experiments have demonstrated that our method can enhance the denoising results on a wide range of synthetic and real mesh models, both quantitatively and visually.</description><subject>Artificial Intelligence</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Methods</subject><subject>Noise reduction</subject><subject>Original Article</subject><subject>Segmentation</subject><subject>Semantics</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4KrgOpqTk-tSijcQXKjrkM6cqVPsTE2mLb690RHcuTr88F8OH2PnIC5BCHuVhUALXEjkAsEA3x-wCSiUXCLoQzYRYB2X1vljdpLzShRtlZ8w_UzLNXVDHNq-43Vqd9TNGorDNhHfJMqUdm23nK0pv81q6vo2F3nKjpr4nuns907Z6-3Ny_yePz7dPcyvH3klrRi4pGphDHhdI1ZIqFBDBONdVFBJERcEWCsAU7533hsVtSFnK5K6wXqhcMouxt5N6j-2lIew6repK5MBhZfKea1cccnRVaU-50RN2KR2HdNnABG-8YQRTyh4wg-esC8hHEO5mLslpb_qf1Jf9PdngA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Wang, Weijia</creator><creator>Pan, Wei</creator><creator>Dai, Chaofan</creator><creator>Dazeley, Richard</creator><creator>Wei, Lei</creator><creator>Rolfe, Bernard</creator><creator>Lu, Xuequan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-0959-408X</orcidid></search><sort><creationdate>20240901</creationdate><title>Segmentation-driven feature-preserving mesh denoising</title><author>Wang, Weijia ; Pan, Wei ; Dai, Chaofan ; Dazeley, Richard ; Wei, Lei ; Rolfe, Bernard ; Lu, Xuequan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-2ecb66195d33c3e34351a1698a41c20abe13d411600389964a56e87ce25f3db43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Methods</topic><topic>Noise reduction</topic><topic>Original Article</topic><topic>Segmentation</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Weijia</creatorcontrib><creatorcontrib>Pan, Wei</creatorcontrib><creatorcontrib>Dai, Chaofan</creatorcontrib><creatorcontrib>Dazeley, Richard</creatorcontrib><creatorcontrib>Wei, Lei</creatorcontrib><creatorcontrib>Rolfe, Bernard</creatorcontrib><creatorcontrib>Lu, Xuequan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Weijia</au><au>Pan, Wei</au><au>Dai, Chaofan</au><au>Dazeley, Richard</au><au>Wei, Lei</au><au>Rolfe, Bernard</au><au>Lu, Xuequan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation-driven feature-preserving mesh denoising</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>40</volume><issue>9</issue><spage>6201</spage><epage>6217</epage><pages>6201-6217</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Feature-preserving mesh denoising has received noticeable attention in visual media, with the aim of recovering high-fidelity, clean mesh shapes from the ones that are contaminated by noise. Existing denoising methods often design smaller weights for anisotropic surfaces and larger weights for isotropic surfaces in order to preserve sharp features, such as edges or corners, on the mesh shapes. However, they often disregard the fact that such small weights on anisotropic surfaces still pose negative impacts on the denoising outcomes and detail preservation results on the shapes. In this paper, we propose a novel segmentation-driven mesh denoising method which performs region-wise denoising, and thus avoids the disturbance of anisotropic neighbour faces for better feature preservation results. Also, our backbone can be easily embedded into commonly used mesh denoising frameworks. Extensive experiments have demonstrated that our method can enhance the denoising results on a wide range of synthetic and real mesh models, both quantitatively and visually.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-023-03161-w</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0959-408X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2024-09, Vol.40 (9), p.6201-6217 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_3092489548 |
source | Springer Link |
subjects | Artificial Intelligence Computer Graphics Computer Science Image Processing and Computer Vision Methods Noise reduction Original Article Segmentation Semantics |
title | Segmentation-driven feature-preserving mesh denoising |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A55%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation-driven%20feature-preserving%20mesh%20denoising&rft.jtitle=The%20Visual%20computer&rft.au=Wang,%20Weijia&rft.date=2024-09-01&rft.volume=40&rft.issue=9&rft.spage=6201&rft.epage=6217&rft.pages=6201-6217&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-023-03161-w&rft_dat=%3Cproquest_cross%3E3092489548%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-2ecb66195d33c3e34351a1698a41c20abe13d411600389964a56e87ce25f3db43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3092489548&rft_id=info:pmid/&rfr_iscdi=true |