Loading…

Segmentation-driven feature-preserving mesh denoising

Feature-preserving mesh denoising has received noticeable attention in visual media, with the aim of recovering high-fidelity, clean mesh shapes from the ones that are contaminated by noise. Existing denoising methods often design smaller weights for anisotropic surfaces and larger weights for isotr...

Full description

Saved in:
Bibliographic Details
Published in:The Visual computer 2024-09, Vol.40 (9), p.6201-6217
Main Authors: Wang, Weijia, Pan, Wei, Dai, Chaofan, Dazeley, Richard, Wei, Lei, Rolfe, Bernard, Lu, Xuequan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-2ecb66195d33c3e34351a1698a41c20abe13d411600389964a56e87ce25f3db43
container_end_page 6217
container_issue 9
container_start_page 6201
container_title The Visual computer
container_volume 40
creator Wang, Weijia
Pan, Wei
Dai, Chaofan
Dazeley, Richard
Wei, Lei
Rolfe, Bernard
Lu, Xuequan
description Feature-preserving mesh denoising has received noticeable attention in visual media, with the aim of recovering high-fidelity, clean mesh shapes from the ones that are contaminated by noise. Existing denoising methods often design smaller weights for anisotropic surfaces and larger weights for isotropic surfaces in order to preserve sharp features, such as edges or corners, on the mesh shapes. However, they often disregard the fact that such small weights on anisotropic surfaces still pose negative impacts on the denoising outcomes and detail preservation results on the shapes. In this paper, we propose a novel segmentation-driven mesh denoising method which performs region-wise denoising, and thus avoids the disturbance of anisotropic neighbour faces for better feature preservation results. Also, our backbone can be easily embedded into commonly used mesh denoising frameworks. Extensive experiments have demonstrated that our method can enhance the denoising results on a wide range of synthetic and real mesh models, both quantitatively and visually.
doi_str_mv 10.1007/s00371-023-03161-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092489548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092489548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-2ecb66195d33c3e34351a1698a41c20abe13d411600389964a56e87ce25f3db43</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4KrgOpqTk-tSijcQXKjrkM6cqVPsTE2mLb690RHcuTr88F8OH2PnIC5BCHuVhUALXEjkAsEA3x-wCSiUXCLoQzYRYB2X1vljdpLzShRtlZ8w_UzLNXVDHNq-43Vqd9TNGorDNhHfJMqUdm23nK0pv81q6vo2F3nKjpr4nuns907Z6-3Ny_yePz7dPcyvH3klrRi4pGphDHhdI1ZIqFBDBONdVFBJERcEWCsAU7533hsVtSFnK5K6wXqhcMouxt5N6j-2lIew6repK5MBhZfKea1cccnRVaU-50RN2KR2HdNnABG-8YQRTyh4wg-esC8hHEO5mLslpb_qf1Jf9PdngA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092489548</pqid></control><display><type>article</type><title>Segmentation-driven feature-preserving mesh denoising</title><source>Springer Link</source><creator>Wang, Weijia ; Pan, Wei ; Dai, Chaofan ; Dazeley, Richard ; Wei, Lei ; Rolfe, Bernard ; Lu, Xuequan</creator><creatorcontrib>Wang, Weijia ; Pan, Wei ; Dai, Chaofan ; Dazeley, Richard ; Wei, Lei ; Rolfe, Bernard ; Lu, Xuequan</creatorcontrib><description>Feature-preserving mesh denoising has received noticeable attention in visual media, with the aim of recovering high-fidelity, clean mesh shapes from the ones that are contaminated by noise. Existing denoising methods often design smaller weights for anisotropic surfaces and larger weights for isotropic surfaces in order to preserve sharp features, such as edges or corners, on the mesh shapes. However, they often disregard the fact that such small weights on anisotropic surfaces still pose negative impacts on the denoising outcomes and detail preservation results on the shapes. In this paper, we propose a novel segmentation-driven mesh denoising method which performs region-wise denoising, and thus avoids the disturbance of anisotropic neighbour faces for better feature preservation results. Also, our backbone can be easily embedded into commonly used mesh denoising frameworks. Extensive experiments have demonstrated that our method can enhance the denoising results on a wide range of synthetic and real mesh models, both quantitatively and visually.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-023-03161-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Computer Graphics ; Computer Science ; Image Processing and Computer Vision ; Methods ; Noise reduction ; Original Article ; Segmentation ; Semantics</subject><ispartof>The Visual computer, 2024-09, Vol.40 (9), p.6201-6217</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-2ecb66195d33c3e34351a1698a41c20abe13d411600389964a56e87ce25f3db43</cites><orcidid>0000-0003-0959-408X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Weijia</creatorcontrib><creatorcontrib>Pan, Wei</creatorcontrib><creatorcontrib>Dai, Chaofan</creatorcontrib><creatorcontrib>Dazeley, Richard</creatorcontrib><creatorcontrib>Wei, Lei</creatorcontrib><creatorcontrib>Rolfe, Bernard</creatorcontrib><creatorcontrib>Lu, Xuequan</creatorcontrib><title>Segmentation-driven feature-preserving mesh denoising</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Feature-preserving mesh denoising has received noticeable attention in visual media, with the aim of recovering high-fidelity, clean mesh shapes from the ones that are contaminated by noise. Existing denoising methods often design smaller weights for anisotropic surfaces and larger weights for isotropic surfaces in order to preserve sharp features, such as edges or corners, on the mesh shapes. However, they often disregard the fact that such small weights on anisotropic surfaces still pose negative impacts on the denoising outcomes and detail preservation results on the shapes. In this paper, we propose a novel segmentation-driven mesh denoising method which performs region-wise denoising, and thus avoids the disturbance of anisotropic neighbour faces for better feature preservation results. Also, our backbone can be easily embedded into commonly used mesh denoising frameworks. Extensive experiments have demonstrated that our method can enhance the denoising results on a wide range of synthetic and real mesh models, both quantitatively and visually.</description><subject>Artificial Intelligence</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Methods</subject><subject>Noise reduction</subject><subject>Original Article</subject><subject>Segmentation</subject><subject>Semantics</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4KrgOpqTk-tSijcQXKjrkM6cqVPsTE2mLb690RHcuTr88F8OH2PnIC5BCHuVhUALXEjkAsEA3x-wCSiUXCLoQzYRYB2X1vljdpLzShRtlZ8w_UzLNXVDHNq-43Vqd9TNGorDNhHfJMqUdm23nK0pv81q6vo2F3nKjpr4nuns907Z6-3Ny_yePz7dPcyvH3klrRi4pGphDHhdI1ZIqFBDBONdVFBJERcEWCsAU7533hsVtSFnK5K6wXqhcMouxt5N6j-2lIew6repK5MBhZfKea1cccnRVaU-50RN2KR2HdNnABG-8YQRTyh4wg-esC8hHEO5mLslpb_qf1Jf9PdngA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Wang, Weijia</creator><creator>Pan, Wei</creator><creator>Dai, Chaofan</creator><creator>Dazeley, Richard</creator><creator>Wei, Lei</creator><creator>Rolfe, Bernard</creator><creator>Lu, Xuequan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-0959-408X</orcidid></search><sort><creationdate>20240901</creationdate><title>Segmentation-driven feature-preserving mesh denoising</title><author>Wang, Weijia ; Pan, Wei ; Dai, Chaofan ; Dazeley, Richard ; Wei, Lei ; Rolfe, Bernard ; Lu, Xuequan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-2ecb66195d33c3e34351a1698a41c20abe13d411600389964a56e87ce25f3db43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Methods</topic><topic>Noise reduction</topic><topic>Original Article</topic><topic>Segmentation</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Weijia</creatorcontrib><creatorcontrib>Pan, Wei</creatorcontrib><creatorcontrib>Dai, Chaofan</creatorcontrib><creatorcontrib>Dazeley, Richard</creatorcontrib><creatorcontrib>Wei, Lei</creatorcontrib><creatorcontrib>Rolfe, Bernard</creatorcontrib><creatorcontrib>Lu, Xuequan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Weijia</au><au>Pan, Wei</au><au>Dai, Chaofan</au><au>Dazeley, Richard</au><au>Wei, Lei</au><au>Rolfe, Bernard</au><au>Lu, Xuequan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation-driven feature-preserving mesh denoising</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>40</volume><issue>9</issue><spage>6201</spage><epage>6217</epage><pages>6201-6217</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Feature-preserving mesh denoising has received noticeable attention in visual media, with the aim of recovering high-fidelity, clean mesh shapes from the ones that are contaminated by noise. Existing denoising methods often design smaller weights for anisotropic surfaces and larger weights for isotropic surfaces in order to preserve sharp features, such as edges or corners, on the mesh shapes. However, they often disregard the fact that such small weights on anisotropic surfaces still pose negative impacts on the denoising outcomes and detail preservation results on the shapes. In this paper, we propose a novel segmentation-driven mesh denoising method which performs region-wise denoising, and thus avoids the disturbance of anisotropic neighbour faces for better feature preservation results. Also, our backbone can be easily embedded into commonly used mesh denoising frameworks. Extensive experiments have demonstrated that our method can enhance the denoising results on a wide range of synthetic and real mesh models, both quantitatively and visually.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-023-03161-w</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0959-408X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0178-2789
ispartof The Visual computer, 2024-09, Vol.40 (9), p.6201-6217
issn 0178-2789
1432-2315
language eng
recordid cdi_proquest_journals_3092489548
source Springer Link
subjects Artificial Intelligence
Computer Graphics
Computer Science
Image Processing and Computer Vision
Methods
Noise reduction
Original Article
Segmentation
Semantics
title Segmentation-driven feature-preserving mesh denoising
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A55%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation-driven%20feature-preserving%20mesh%20denoising&rft.jtitle=The%20Visual%20computer&rft.au=Wang,%20Weijia&rft.date=2024-09-01&rft.volume=40&rft.issue=9&rft.spage=6201&rft.epage=6217&rft.pages=6201-6217&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-023-03161-w&rft_dat=%3Cproquest_cross%3E3092489548%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-2ecb66195d33c3e34351a1698a41c20abe13d411600389964a56e87ce25f3db43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3092489548&rft_id=info:pmid/&rfr_iscdi=true