Loading…

A novel quasi-intermittent vibration assisted swing cutting device: Design and experimental investigation

Elliptical vibration assisted cutting (EVAC) is gradually being one of the most potential machining methods for difficult to machine materials. However, the elliptical trajectory causes periodic residual traces on machined surface. A novel quasi-intermittent vibration assisted swing cutting (QVASC)...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture Journal of engineering manufacture, 2024-08, Vol.238 (10), p.1474-1493
Main Authors: Du, Yongsheng, Lu, Mingming, Lin, Jieqiong, Zhu, Zhimin, Gao, Qiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Elliptical vibration assisted cutting (EVAC) is gradually being one of the most potential machining methods for difficult to machine materials. However, the elliptical trajectory causes periodic residual traces on machined surface. A novel quasi-intermittent vibration assisted swing cutting (QVASC) device driven by two piezoelectric actuators is proposed to reduce the residual traces between adjacent paths and improve surface quality. An X-shaped flexure hinge was used to suppress the mutual interference between two driving shafts and realize kinematic decoupling. The mechanical configuration and geometric parameters of the proposed device were designed based on the analyzing of kinematics, dynamics, and flexible characteristics. The effectiveness of the proposed device was verified by finite element analysis and off-line performance test. Tests results show that the maximum coupling ratio of motion axis, maximum motion stroke, and minimum resolution of QVASC device are 1.65%, 19.943 μm, and 9.55 nm, which are satisfied with the design and machining requirements. Finally, systematic turning experiments were carried out to verify the effectiveness of the proposed device in restraining cutting residual traces. The experimental results indicate that the proposed device can effectively inhibit the generation of periodic residual traces, which validates the feasibility of the QVASC device.
ISSN:0954-4054
2041-2975
DOI:10.1177/09544054231202085