Loading…

Heat transfer characteristics of the air-oil heat exchanger with spiral tube

The cooling problem of hot-end components has become an important factor restricting the aero-engine performance, life and reliability. In order to improve the cooling quality of the cooling air, the supercritical aviation kerosene was used as a heat sink to cool the cooling air in a spiral heat exc...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy Journal of power and energy, 2024-08, Vol.238 (5), p.887-898
Main Authors: Kou, Zhihai, Cao, Baolin, Zhang, Qi, Li, Binbin, Li, Guangchao, Yin, Xunyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cooling problem of hot-end components has become an important factor restricting the aero-engine performance, life and reliability. In order to improve the cooling quality of the cooling air, the supercritical aviation kerosene was used as a heat sink to cool the cooling air in a spiral heat exchanger. The flow and heat transfer process of the air-oil heat exchanger with spiral tube were numerically simulated using Fluent software. The flow and heat transfer situation of air and aviation kerosene were analyzed in detail. The optimized spiral heat exchanger with the diaphragm was presented to enhance the heat transfer capacity of the air side. It is found that the heat transfer performance of the air-oil heat exchanger is greatly enhanced by the spiral tube due to the secondary flow effect. With the increase in the turning angle of the spiral tube, the effect of the secondary flow for the heat transfer enhancement is strengthened. The PEC index of the spiral heat exchanger increases with the increase in the air flow rate. The spiral heat exchanger with the diaphragm can effectively improve the heat transfer performance of the heat exchanger, and increase the PEC index of the air side by more than 20%.
ISSN:0957-6509
2041-2967
DOI:10.1177/09576509241237006