Loading…
Dynamical Conductivities for the Fermionic Lieb Lattice
On the Lieb lattice, each unit cell contains three atoms, and its energy spectrum has a three-band structure, with a flat band touching two dispersive bands at a single point. The spin–orbit coupling term does not affect the flat band. However, it opens the gap between the flat and upper and lower d...
Saved in:
Published in: | Brazilian journal of physics 2024-10, Vol.54 (5), Article 197 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c200t-35baa9aa1920d80768bccfc2a349b5478ec35d3dd1c10c39caa567a6a2250aae3 |
container_end_page | |
container_issue | 5 |
container_start_page | |
container_title | Brazilian journal of physics |
container_volume | 54 |
creator | Pires, A. S. T. |
description | On the Lieb lattice, each unit cell contains three atoms, and its energy spectrum has a three-band structure, with a flat band touching two dispersive bands at a single point. The spin–orbit coupling term does not affect the flat band. However, it opens the gap between the flat and upper and lower dispersive bands, generating a nontrivial intrinsic Berry phase that leads to topological spin transport features. We calculate the transverse Hall conductivity and the dynamical longitudinal conductivity. |
doi_str_mv | 10.1007/s13538-024-01574-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3093153511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093153511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-35baa9aa1920d80768bccfc2a349b5478ec35d3dd1c10c39caa567a6a2250aae3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5giMRvOOTtORlQoIEVigdm6OA64apNiu0jtrycQJDamW7733ulj7FLAtQDQN1GgwpJDLjkIpSU_HLGZKHTJpZTlMZuBAOSVRjxlZzGuAHIFEmdM3-172nhL62wx9O3OJv_pk3cx64aQpXeXLV3Y-KH3Nqu9a7KaUvLWnbOTjtbRXfzeOXtd3r8sHnn9_PC0uK25zQESR9UQVUSiyqEtQRdlY21nc0JZNUrq0llULbatsAIsVpZIFZoKysf_iBzO2dXUuw3Dx87FZFbDLvTjpEGoUChUQoxUPlE2DDEG15lt8BsKeyPAfAsykyAzCjI_gsxhDOEUiiPcv7nwV_1P6gvkm2i8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093153511</pqid></control><display><type>article</type><title>Dynamical Conductivities for the Fermionic Lieb Lattice</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Pires, A. S. T.</creator><creatorcontrib>Pires, A. S. T.</creatorcontrib><description>On the Lieb lattice, each unit cell contains three atoms, and its energy spectrum has a three-band structure, with a flat band touching two dispersive bands at a single point. The spin–orbit coupling term does not affect the flat band. However, it opens the gap between the flat and upper and lower dispersive bands, generating a nontrivial intrinsic Berry phase that leads to topological spin transport features. We calculate the transverse Hall conductivity and the dynamical longitudinal conductivity.</description><identifier>ISSN: 0103-9733</identifier><identifier>EISSN: 1678-4448</identifier><identifier>DOI: 10.1007/s13538-024-01574-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Atomic structure ; Banded structure ; Energy spectra ; Physics ; Physics and Astronomy ; Spin-orbit interactions ; Unit cell</subject><ispartof>Brazilian journal of physics, 2024-10, Vol.54 (5), Article 197</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Física 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-35baa9aa1920d80768bccfc2a349b5478ec35d3dd1c10c39caa567a6a2250aae3</cites><orcidid>0000-0002-0174-1607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pires, A. S. T.</creatorcontrib><title>Dynamical Conductivities for the Fermionic Lieb Lattice</title><title>Brazilian journal of physics</title><addtitle>Braz J Phys</addtitle><description>On the Lieb lattice, each unit cell contains three atoms, and its energy spectrum has a three-band structure, with a flat band touching two dispersive bands at a single point. The spin–orbit coupling term does not affect the flat band. However, it opens the gap between the flat and upper and lower dispersive bands, generating a nontrivial intrinsic Berry phase that leads to topological spin transport features. We calculate the transverse Hall conductivity and the dynamical longitudinal conductivity.</description><subject>Atomic structure</subject><subject>Banded structure</subject><subject>Energy spectra</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Spin-orbit interactions</subject><subject>Unit cell</subject><issn>0103-9733</issn><issn>1678-4448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5giMRvOOTtORlQoIEVigdm6OA64apNiu0jtrycQJDamW7733ulj7FLAtQDQN1GgwpJDLjkIpSU_HLGZKHTJpZTlMZuBAOSVRjxlZzGuAHIFEmdM3-172nhL62wx9O3OJv_pk3cx64aQpXeXLV3Y-KH3Nqu9a7KaUvLWnbOTjtbRXfzeOXtd3r8sHnn9_PC0uK25zQESR9UQVUSiyqEtQRdlY21nc0JZNUrq0llULbatsAIsVpZIFZoKysf_iBzO2dXUuw3Dx87FZFbDLvTjpEGoUChUQoxUPlE2DDEG15lt8BsKeyPAfAsykyAzCjI_gsxhDOEUiiPcv7nwV_1P6gvkm2i8</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Pires, A. S. T.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0174-1607</orcidid></search><sort><creationdate>20241001</creationdate><title>Dynamical Conductivities for the Fermionic Lieb Lattice</title><author>Pires, A. S. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-35baa9aa1920d80768bccfc2a349b5478ec35d3dd1c10c39caa567a6a2250aae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic structure</topic><topic>Banded structure</topic><topic>Energy spectra</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Spin-orbit interactions</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pires, A. S. T.</creatorcontrib><collection>CrossRef</collection><jtitle>Brazilian journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pires, A. S. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical Conductivities for the Fermionic Lieb Lattice</atitle><jtitle>Brazilian journal of physics</jtitle><stitle>Braz J Phys</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>54</volume><issue>5</issue><artnum>197</artnum><issn>0103-9733</issn><eissn>1678-4448</eissn><abstract>On the Lieb lattice, each unit cell contains three atoms, and its energy spectrum has a three-band structure, with a flat band touching two dispersive bands at a single point. The spin–orbit coupling term does not affect the flat band. However, it opens the gap between the flat and upper and lower dispersive bands, generating a nontrivial intrinsic Berry phase that leads to topological spin transport features. We calculate the transverse Hall conductivity and the dynamical longitudinal conductivity.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s13538-024-01574-z</doi><orcidid>https://orcid.org/0000-0002-0174-1607</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0103-9733 |
ispartof | Brazilian journal of physics, 2024-10, Vol.54 (5), Article 197 |
issn | 0103-9733 1678-4448 |
language | eng |
recordid | cdi_proquest_journals_3093153511 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Atomic structure Banded structure Energy spectra Physics Physics and Astronomy Spin-orbit interactions Unit cell |
title | Dynamical Conductivities for the Fermionic Lieb Lattice |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A22%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20Conductivities%20for%20the%20Fermionic%20Lieb%20Lattice&rft.jtitle=Brazilian%20journal%20of%20physics&rft.au=Pires,%20A.%20S.%20T.&rft.date=2024-10-01&rft.volume=54&rft.issue=5&rft.artnum=197&rft.issn=0103-9733&rft.eissn=1678-4448&rft_id=info:doi/10.1007/s13538-024-01574-z&rft_dat=%3Cproquest_cross%3E3093153511%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-35baa9aa1920d80768bccfc2a349b5478ec35d3dd1c10c39caa567a6a2250aae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3093153511&rft_id=info:pmid/&rfr_iscdi=true |