Loading…

Directional Chebyshev Constants on the Boundary

We prove results on existence of limits in the definition of (weighted) directional Chebyshev constants at all points of the standard simplex \(\Sigma \subset {\bf R}^d\) for (locally) regular compact sets \(K\subset {\bf C}^d\).

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-08
Main Authors: Bloom, Thomas, Levenberg, Norman
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bloom, Thomas
Levenberg, Norman
description We prove results on existence of limits in the definition of (weighted) directional Chebyshev constants at all points of the standard simplex \(\Sigma \subset {\bf R}^d\) for (locally) regular compact sets \(K\subset {\bf C}^d\).
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3093280403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093280403</sourcerecordid><originalsourceid>FETCH-proquest_journals_30932804033</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQd8ksSk0uyczPS8xRcM5ITaoszkgtU3DOzysuScwrKVbIz1MoyUhVcMovzUtJLKrkYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUVAw4rjjQ0sjY0sDEwMjI2JUwUAPP0ywg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093280403</pqid></control><display><type>article</type><title>Directional Chebyshev Constants on the Boundary</title><source>Publicly Available Content Database</source><creator>Bloom, Thomas ; Levenberg, Norman</creator><creatorcontrib>Bloom, Thomas ; Levenberg, Norman</creatorcontrib><description>We prove results on existence of limits in the definition of (weighted) directional Chebyshev constants at all points of the standard simplex \(\Sigma \subset {\bf R}^d\) for (locally) regular compact sets \(K\subset {\bf C}^d\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chebyshev approximation</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3093280403?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Bloom, Thomas</creatorcontrib><creatorcontrib>Levenberg, Norman</creatorcontrib><title>Directional Chebyshev Constants on the Boundary</title><title>arXiv.org</title><description>We prove results on existence of limits in the definition of (weighted) directional Chebyshev constants at all points of the standard simplex \(\Sigma \subset {\bf R}^d\) for (locally) regular compact sets \(K\subset {\bf C}^d\).</description><subject>Chebyshev approximation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQd8ksSk0uyczPS8xRcM5ITaoszkgtU3DOzysuScwrKVbIz1MoyUhVcMovzUtJLKrkYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUVAw4rjjQ0sjY0sDEwMjI2JUwUAPP0ywg</recordid><startdate>20240814</startdate><enddate>20240814</enddate><creator>Bloom, Thomas</creator><creator>Levenberg, Norman</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240814</creationdate><title>Directional Chebyshev Constants on the Boundary</title><author>Bloom, Thomas ; Levenberg, Norman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30932804033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chebyshev approximation</topic><toplevel>online_resources</toplevel><creatorcontrib>Bloom, Thomas</creatorcontrib><creatorcontrib>Levenberg, Norman</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bloom, Thomas</au><au>Levenberg, Norman</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Directional Chebyshev Constants on the Boundary</atitle><jtitle>arXiv.org</jtitle><date>2024-08-14</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We prove results on existence of limits in the definition of (weighted) directional Chebyshev constants at all points of the standard simplex \(\Sigma \subset {\bf R}^d\) for (locally) regular compact sets \(K\subset {\bf C}^d\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3093280403
source Publicly Available Content Database
subjects Chebyshev approximation
title Directional Chebyshev Constants on the Boundary
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Directional%20Chebyshev%20Constants%20on%20the%20Boundary&rft.jtitle=arXiv.org&rft.au=Bloom,%20Thomas&rft.date=2024-08-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3093280403%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30932804033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3093280403&rft_id=info:pmid/&rfr_iscdi=true