Loading…
Shadow formalism for supersymmetric conformal blocks
Shadow formalism is a technique in two-dimensional CFT allowing straightforward computation of conformal blocks in the limit of infinitely large central charge. We generalize the construction of shadow operator for superconformal field theories. We demonstrate that shadow formalism yields known expr...
Saved in:
Published in: | arXiv.org 2024-08 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Belavin, Vladimir Juan Ramos Cabezas Runov, Boris |
description | Shadow formalism is a technique in two-dimensional CFT allowing straightforward computation of conformal blocks in the limit of infinitely large central charge. We generalize the construction of shadow operator for superconformal field theories. We demonstrate that shadow formalism yields known expressions for the large-c limit of the four-point superconformal block on a plane and of the one-point superconformal block on a torus. We also explicitly find the two-point global torus superconformal block in the necklace channel and check it against the Casimir differential equation. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3093280717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093280717</sourcerecordid><originalsourceid>FETCH-proquest_journals_30932807173</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCc5ITMkvV0jLL8pNzMkszgWxFIpLC1KLiitzc1NLijKTFZLz8yDyCkk5-cnZxTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9sYGlsZGFgbmhuTJwqALZ_NWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093280717</pqid></control><display><type>article</type><title>Shadow formalism for supersymmetric conformal blocks</title><source>Publicly Available Content (ProQuest)</source><creator>Belavin, Vladimir ; Juan Ramos Cabezas ; Runov, Boris</creator><creatorcontrib>Belavin, Vladimir ; Juan Ramos Cabezas ; Runov, Boris</creatorcontrib><description>Shadow formalism is a technique in two-dimensional CFT allowing straightforward computation of conformal blocks in the limit of infinitely large central charge. We generalize the construction of shadow operator for superconformal field theories. We demonstrate that shadow formalism yields known expressions for the large-c limit of the four-point superconformal block on a plane and of the one-point superconformal block on a torus. We also explicitly find the two-point global torus superconformal block in the necklace channel and check it against the Casimir differential equation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Differential equations ; Formalism ; Shadows ; Toruses</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3093280717?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Belavin, Vladimir</creatorcontrib><creatorcontrib>Juan Ramos Cabezas</creatorcontrib><creatorcontrib>Runov, Boris</creatorcontrib><title>Shadow formalism for supersymmetric conformal blocks</title><title>arXiv.org</title><description>Shadow formalism is a technique in two-dimensional CFT allowing straightforward computation of conformal blocks in the limit of infinitely large central charge. We generalize the construction of shadow operator for superconformal field theories. We demonstrate that shadow formalism yields known expressions for the large-c limit of the four-point superconformal block on a plane and of the one-point superconformal block on a torus. We also explicitly find the two-point global torus superconformal block in the necklace channel and check it against the Casimir differential equation.</description><subject>Differential equations</subject><subject>Formalism</subject><subject>Shadows</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCc5ITMkvV0jLL8pNzMkszgWxFIpLC1KLiitzc1NLijKTFZLz8yDyCkk5-cnZxTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9sYGlsZGFgbmhuTJwqALZ_NWs</recordid><startdate>20240814</startdate><enddate>20240814</enddate><creator>Belavin, Vladimir</creator><creator>Juan Ramos Cabezas</creator><creator>Runov, Boris</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240814</creationdate><title>Shadow formalism for supersymmetric conformal blocks</title><author>Belavin, Vladimir ; Juan Ramos Cabezas ; Runov, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30932807173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Differential equations</topic><topic>Formalism</topic><topic>Shadows</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Belavin, Vladimir</creatorcontrib><creatorcontrib>Juan Ramos Cabezas</creatorcontrib><creatorcontrib>Runov, Boris</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belavin, Vladimir</au><au>Juan Ramos Cabezas</au><au>Runov, Boris</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Shadow formalism for supersymmetric conformal blocks</atitle><jtitle>arXiv.org</jtitle><date>2024-08-14</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Shadow formalism is a technique in two-dimensional CFT allowing straightforward computation of conformal blocks in the limit of infinitely large central charge. We generalize the construction of shadow operator for superconformal field theories. We demonstrate that shadow formalism yields known expressions for the large-c limit of the four-point superconformal block on a plane and of the one-point superconformal block on a torus. We also explicitly find the two-point global torus superconformal block in the necklace channel and check it against the Casimir differential equation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3093280717 |
source | Publicly Available Content (ProQuest) |
subjects | Differential equations Formalism Shadows Toruses |
title | Shadow formalism for supersymmetric conformal blocks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Shadow%20formalism%20for%20supersymmetric%20conformal%20blocks&rft.jtitle=arXiv.org&rft.au=Belavin,%20Vladimir&rft.date=2024-08-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3093280717%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30932807173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3093280717&rft_id=info:pmid/&rfr_iscdi=true |