Loading…

Shadow formalism for supersymmetric conformal blocks

Shadow formalism is a technique in two-dimensional CFT allowing straightforward computation of conformal blocks in the limit of infinitely large central charge. We generalize the construction of shadow operator for superconformal field theories. We demonstrate that shadow formalism yields known expr...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-08
Main Authors: Belavin, Vladimir, Juan Ramos Cabezas, Runov, Boris
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Belavin, Vladimir
Juan Ramos Cabezas
Runov, Boris
description Shadow formalism is a technique in two-dimensional CFT allowing straightforward computation of conformal blocks in the limit of infinitely large central charge. We generalize the construction of shadow operator for superconformal field theories. We demonstrate that shadow formalism yields known expressions for the large-c limit of the four-point superconformal block on a plane and of the one-point superconformal block on a torus. We also explicitly find the two-point global torus superconformal block in the necklace channel and check it against the Casimir differential equation.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3093280717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093280717</sourcerecordid><originalsourceid>FETCH-proquest_journals_30932807173</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCc5ITMkvV0jLL8pNzMkszgWxFIpLC1KLiitzc1NLijKTFZLz8yDyCkk5-cnZxTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9sYGlsZGFgbmhuTJwqALZ_NWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093280717</pqid></control><display><type>article</type><title>Shadow formalism for supersymmetric conformal blocks</title><source>Publicly Available Content (ProQuest)</source><creator>Belavin, Vladimir ; Juan Ramos Cabezas ; Runov, Boris</creator><creatorcontrib>Belavin, Vladimir ; Juan Ramos Cabezas ; Runov, Boris</creatorcontrib><description>Shadow formalism is a technique in two-dimensional CFT allowing straightforward computation of conformal blocks in the limit of infinitely large central charge. We generalize the construction of shadow operator for superconformal field theories. We demonstrate that shadow formalism yields known expressions for the large-c limit of the four-point superconformal block on a plane and of the one-point superconformal block on a torus. We also explicitly find the two-point global torus superconformal block in the necklace channel and check it against the Casimir differential equation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Differential equations ; Formalism ; Shadows ; Toruses</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3093280717?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Belavin, Vladimir</creatorcontrib><creatorcontrib>Juan Ramos Cabezas</creatorcontrib><creatorcontrib>Runov, Boris</creatorcontrib><title>Shadow formalism for supersymmetric conformal blocks</title><title>arXiv.org</title><description>Shadow formalism is a technique in two-dimensional CFT allowing straightforward computation of conformal blocks in the limit of infinitely large central charge. We generalize the construction of shadow operator for superconformal field theories. We demonstrate that shadow formalism yields known expressions for the large-c limit of the four-point superconformal block on a plane and of the one-point superconformal block on a torus. We also explicitly find the two-point global torus superconformal block in the necklace channel and check it against the Casimir differential equation.</description><subject>Differential equations</subject><subject>Formalism</subject><subject>Shadows</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCc5ITMkvV0jLL8pNzMkszgWxFIpLC1KLiitzc1NLijKTFZLz8yDyCkk5-cnZxTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9sYGlsZGFgbmhuTJwqALZ_NWs</recordid><startdate>20240814</startdate><enddate>20240814</enddate><creator>Belavin, Vladimir</creator><creator>Juan Ramos Cabezas</creator><creator>Runov, Boris</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240814</creationdate><title>Shadow formalism for supersymmetric conformal blocks</title><author>Belavin, Vladimir ; Juan Ramos Cabezas ; Runov, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30932807173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Differential equations</topic><topic>Formalism</topic><topic>Shadows</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Belavin, Vladimir</creatorcontrib><creatorcontrib>Juan Ramos Cabezas</creatorcontrib><creatorcontrib>Runov, Boris</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belavin, Vladimir</au><au>Juan Ramos Cabezas</au><au>Runov, Boris</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Shadow formalism for supersymmetric conformal blocks</atitle><jtitle>arXiv.org</jtitle><date>2024-08-14</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Shadow formalism is a technique in two-dimensional CFT allowing straightforward computation of conformal blocks in the limit of infinitely large central charge. We generalize the construction of shadow operator for superconformal field theories. We demonstrate that shadow formalism yields known expressions for the large-c limit of the four-point superconformal block on a plane and of the one-point superconformal block on a torus. We also explicitly find the two-point global torus superconformal block in the necklace channel and check it against the Casimir differential equation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3093280717
source Publicly Available Content (ProQuest)
subjects Differential equations
Formalism
Shadows
Toruses
title Shadow formalism for supersymmetric conformal blocks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Shadow%20formalism%20for%20supersymmetric%20conformal%20blocks&rft.jtitle=arXiv.org&rft.au=Belavin,%20Vladimir&rft.date=2024-08-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3093280717%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30932807173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3093280717&rft_id=info:pmid/&rfr_iscdi=true