Loading…

Anion‐Dominated Conventional‐Concentrations Electrolyte to Improve Low‐Temperature Performance of Lithium‐Ion Batteries

Low temperatures (< −20 °C) significantly diminish lithium‐ion battery performance due to freezing issues within commercial electrolytes and the high energy barrier for Li+ desolvation at the interface. Although high‐concentration electrolytes and localized high‐concentration electrolytes enhance...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2024-08, Vol.34 (33), p.n/a
Main Authors: Chen, Nan, Feng, Mai, Li, Chengjie, Shang, Yanxin, Ma, Yue, Zhang, Jinxiang, Li, Yifan, Chen, Guoshuai, Wu, Feng, Chen, Renjie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2727-eabda7d4a7ada480d9fbbe6abef575642ea78925e545d6689d7cbf0d239d4f2e3
container_end_page n/a
container_issue 33
container_start_page
container_title Advanced functional materials
container_volume 34
creator Chen, Nan
Feng, Mai
Li, Chengjie
Shang, Yanxin
Ma, Yue
Zhang, Jinxiang
Li, Yifan
Chen, Guoshuai
Wu, Feng
Chen, Renjie
description Low temperatures (< −20 °C) significantly diminish lithium‐ion battery performance due to freezing issues within commercial electrolytes and the high energy barrier for Li+ desolvation at the interface. Although high‐concentration electrolytes and localized high‐concentration electrolytes enhance Li+ desolvation kinetics featuring anion‐participated solvation structures, their high viscosity and propensity for Li salt precipitation render them unsuitable for low‐temperature environments. This study introduces an anion‐dominated conventional‐concentrations electrolyte (ACCE) created by incorporating Lithium difluorophosphate(LiPO2F2)into a 1 M Lithium bis((trifluoromethyl)sulfonyl)azanide(LiTFSI) Dimethyl carbonate(DMC)/Fluoroethylene carbonate(FEC)/Methyl acetate(MA) electrolyte solution. LiPO2F2, characterized by its poor solubility and strong binding with Li+, demonstrates a pronounced tendency to integrate into the primary solvation sheath of Li+. Moreover, the synergy between LiTFSI and LiPO2F2 establishes a dual anion configuration, unveiling a dual anion‐driven mechanism. This mechanism significantly diminishes the interaction between Li+ and solvent molecules, resulting in reduced desolvation energy under low temperatures. The ACCE exhibits high ionic conductivity of 1.3 mS cm−1 at −50 °C, enabling stable cycling of Li/NCM811 cells at −50 °C, and further allows 0.75 Ah graphite(Gr)/LiNi0.8Co0.1Mn0.1O2(NCM811) batteries dischargeable at −40 °C. This study presents a practical application potential for poorly soluble lithium salts and provides a new avenue for designing electrolytes suitable for low‐temperature applications. A novel ACCE is proposed, leveraging LiPO2F2’s low solubility and strong binding to Li+, accelerating Li+ de‐solvation process. This forms a LiF‐rich, phosphate‐rich CEI film, enabling lithium‐ion batteries to cycle at −50 °C extremely low temperature.
doi_str_mv 10.1002/adfm.202400337
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3093374604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093374604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2727-eabda7d4a7ada480d9fbbe6abef575642ea78925e545d6689d7cbf0d239d4f2e3</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhiMEEqWwMltiTnEcJ07G0gtUCoKhSGyWEx-LVElcbKdVJ3gEnpEnwVVRGZnO7fuPzvmD4DrCowhjciukakcEE4pxHLOTYBClURrGmGSnxzx6PQ8urF1hHDEW00HwMe5q3X1_fk11W3fCgUQT3W2gc74tGj_wZeVLI_Ydi2YNVM7oZucAOY0W7droDaBCbz27hHYNnuwNoGcwSptWeDXSChW1e6v71kML3aE74RyYGuxlcKZEY-HqNw6Dl_lsOXkIi6f7xWRchBVhhIUgSimYpIIJKWiGZa7KElJRgkpYklICgmU5SSChiUzTLJesKhWWJM4lVQTiYXBz2OvPfe_BOr7SvfEfWh7j3PtFU0w9NTpQldHWGlB8bepWmB2PMN-bzPcm86PJXpAfBNu6gd0_NB9P549_2h9Go4iF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093374604</pqid></control><display><type>article</type><title>Anion‐Dominated Conventional‐Concentrations Electrolyte to Improve Low‐Temperature Performance of Lithium‐Ion Batteries</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Chen, Nan ; Feng, Mai ; Li, Chengjie ; Shang, Yanxin ; Ma, Yue ; Zhang, Jinxiang ; Li, Yifan ; Chen, Guoshuai ; Wu, Feng ; Chen, Renjie</creator><creatorcontrib>Chen, Nan ; Feng, Mai ; Li, Chengjie ; Shang, Yanxin ; Ma, Yue ; Zhang, Jinxiang ; Li, Yifan ; Chen, Guoshuai ; Wu, Feng ; Chen, Renjie</creatorcontrib><description>Low temperatures (&lt; −20 °C) significantly diminish lithium‐ion battery performance due to freezing issues within commercial electrolytes and the high energy barrier for Li+ desolvation at the interface. Although high‐concentration electrolytes and localized high‐concentration electrolytes enhance Li+ desolvation kinetics featuring anion‐participated solvation structures, their high viscosity and propensity for Li salt precipitation render them unsuitable for low‐temperature environments. This study introduces an anion‐dominated conventional‐concentrations electrolyte (ACCE) created by incorporating Lithium difluorophosphate(LiPO2F2)into a 1 M Lithium bis((trifluoromethyl)sulfonyl)azanide(LiTFSI) Dimethyl carbonate(DMC)/Fluoroethylene carbonate(FEC)/Methyl acetate(MA) electrolyte solution. LiPO2F2, characterized by its poor solubility and strong binding with Li+, demonstrates a pronounced tendency to integrate into the primary solvation sheath of Li+. Moreover, the synergy between LiTFSI and LiPO2F2 establishes a dual anion configuration, unveiling a dual anion‐driven mechanism. This mechanism significantly diminishes the interaction between Li+ and solvent molecules, resulting in reduced desolvation energy under low temperatures. The ACCE exhibits high ionic conductivity of 1.3 mS cm−1 at −50 °C, enabling stable cycling of Li/NCM811 cells at −50 °C, and further allows 0.75 Ah graphite(Gr)/LiNi0.8Co0.1Mn0.1O2(NCM811) batteries dischargeable at −40 °C. This study presents a practical application potential for poorly soluble lithium salts and provides a new avenue for designing electrolytes suitable for low‐temperature applications. A novel ACCE is proposed, leveraging LiPO2F2’s low solubility and strong binding to Li+, accelerating Li+ de‐solvation process. This forms a LiF‐rich, phosphate‐rich CEI film, enabling lithium‐ion batteries to cycle at −50 °C extremely low temperature.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202400337</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anions ; electrolyte ; Electrolytes ; Electrolytic cells ; Freezing ; Ion currents ; Lithium ; lithium difluorophosphate ; Lithium-ion batteries ; Low temperature ; Sheaths ; Solvation ; solvation structure ; Temperature</subject><ispartof>Advanced functional materials, 2024-08, Vol.34 (33), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2727-eabda7d4a7ada480d9fbbe6abef575642ea78925e545d6689d7cbf0d239d4f2e3</cites><orcidid>0000-0002-7001-2926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Nan</creatorcontrib><creatorcontrib>Feng, Mai</creatorcontrib><creatorcontrib>Li, Chengjie</creatorcontrib><creatorcontrib>Shang, Yanxin</creatorcontrib><creatorcontrib>Ma, Yue</creatorcontrib><creatorcontrib>Zhang, Jinxiang</creatorcontrib><creatorcontrib>Li, Yifan</creatorcontrib><creatorcontrib>Chen, Guoshuai</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><title>Anion‐Dominated Conventional‐Concentrations Electrolyte to Improve Low‐Temperature Performance of Lithium‐Ion Batteries</title><title>Advanced functional materials</title><description>Low temperatures (&lt; −20 °C) significantly diminish lithium‐ion battery performance due to freezing issues within commercial electrolytes and the high energy barrier for Li+ desolvation at the interface. Although high‐concentration electrolytes and localized high‐concentration electrolytes enhance Li+ desolvation kinetics featuring anion‐participated solvation structures, their high viscosity and propensity for Li salt precipitation render them unsuitable for low‐temperature environments. This study introduces an anion‐dominated conventional‐concentrations electrolyte (ACCE) created by incorporating Lithium difluorophosphate(LiPO2F2)into a 1 M Lithium bis((trifluoromethyl)sulfonyl)azanide(LiTFSI) Dimethyl carbonate(DMC)/Fluoroethylene carbonate(FEC)/Methyl acetate(MA) electrolyte solution. LiPO2F2, characterized by its poor solubility and strong binding with Li+, demonstrates a pronounced tendency to integrate into the primary solvation sheath of Li+. Moreover, the synergy between LiTFSI and LiPO2F2 establishes a dual anion configuration, unveiling a dual anion‐driven mechanism. This mechanism significantly diminishes the interaction between Li+ and solvent molecules, resulting in reduced desolvation energy under low temperatures. The ACCE exhibits high ionic conductivity of 1.3 mS cm−1 at −50 °C, enabling stable cycling of Li/NCM811 cells at −50 °C, and further allows 0.75 Ah graphite(Gr)/LiNi0.8Co0.1Mn0.1O2(NCM811) batteries dischargeable at −40 °C. This study presents a practical application potential for poorly soluble lithium salts and provides a new avenue for designing electrolytes suitable for low‐temperature applications. A novel ACCE is proposed, leveraging LiPO2F2’s low solubility and strong binding to Li+, accelerating Li+ de‐solvation process. This forms a LiF‐rich, phosphate‐rich CEI film, enabling lithium‐ion batteries to cycle at −50 °C extremely low temperature.</description><subject>Anions</subject><subject>electrolyte</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Freezing</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>lithium difluorophosphate</subject><subject>Lithium-ion batteries</subject><subject>Low temperature</subject><subject>Sheaths</subject><subject>Solvation</subject><subject>solvation structure</subject><subject>Temperature</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhiMEEqWwMltiTnEcJ07G0gtUCoKhSGyWEx-LVElcbKdVJ3gEnpEnwVVRGZnO7fuPzvmD4DrCowhjciukakcEE4pxHLOTYBClURrGmGSnxzx6PQ8urF1hHDEW00HwMe5q3X1_fk11W3fCgUQT3W2gc74tGj_wZeVLI_Ydi2YNVM7oZucAOY0W7droDaBCbz27hHYNnuwNoGcwSptWeDXSChW1e6v71kML3aE74RyYGuxlcKZEY-HqNw6Dl_lsOXkIi6f7xWRchBVhhIUgSimYpIIJKWiGZa7KElJRgkpYklICgmU5SSChiUzTLJesKhWWJM4lVQTiYXBz2OvPfe_BOr7SvfEfWh7j3PtFU0w9NTpQldHWGlB8bepWmB2PMN-bzPcm86PJXpAfBNu6gd0_NB9P549_2h9Go4iF</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Chen, Nan</creator><creator>Feng, Mai</creator><creator>Li, Chengjie</creator><creator>Shang, Yanxin</creator><creator>Ma, Yue</creator><creator>Zhang, Jinxiang</creator><creator>Li, Yifan</creator><creator>Chen, Guoshuai</creator><creator>Wu, Feng</creator><creator>Chen, Renjie</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7001-2926</orcidid></search><sort><creationdate>20240801</creationdate><title>Anion‐Dominated Conventional‐Concentrations Electrolyte to Improve Low‐Temperature Performance of Lithium‐Ion Batteries</title><author>Chen, Nan ; Feng, Mai ; Li, Chengjie ; Shang, Yanxin ; Ma, Yue ; Zhang, Jinxiang ; Li, Yifan ; Chen, Guoshuai ; Wu, Feng ; Chen, Renjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2727-eabda7d4a7ada480d9fbbe6abef575642ea78925e545d6689d7cbf0d239d4f2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anions</topic><topic>electrolyte</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Freezing</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>lithium difluorophosphate</topic><topic>Lithium-ion batteries</topic><topic>Low temperature</topic><topic>Sheaths</topic><topic>Solvation</topic><topic>solvation structure</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Nan</creatorcontrib><creatorcontrib>Feng, Mai</creatorcontrib><creatorcontrib>Li, Chengjie</creatorcontrib><creatorcontrib>Shang, Yanxin</creatorcontrib><creatorcontrib>Ma, Yue</creatorcontrib><creatorcontrib>Zhang, Jinxiang</creatorcontrib><creatorcontrib>Li, Yifan</creatorcontrib><creatorcontrib>Chen, Guoshuai</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Nan</au><au>Feng, Mai</au><au>Li, Chengjie</au><au>Shang, Yanxin</au><au>Ma, Yue</au><au>Zhang, Jinxiang</au><au>Li, Yifan</au><au>Chen, Guoshuai</au><au>Wu, Feng</au><au>Chen, Renjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anion‐Dominated Conventional‐Concentrations Electrolyte to Improve Low‐Temperature Performance of Lithium‐Ion Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>34</volume><issue>33</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Low temperatures (&lt; −20 °C) significantly diminish lithium‐ion battery performance due to freezing issues within commercial electrolytes and the high energy barrier for Li+ desolvation at the interface. Although high‐concentration electrolytes and localized high‐concentration electrolytes enhance Li+ desolvation kinetics featuring anion‐participated solvation structures, their high viscosity and propensity for Li salt precipitation render them unsuitable for low‐temperature environments. This study introduces an anion‐dominated conventional‐concentrations electrolyte (ACCE) created by incorporating Lithium difluorophosphate(LiPO2F2)into a 1 M Lithium bis((trifluoromethyl)sulfonyl)azanide(LiTFSI) Dimethyl carbonate(DMC)/Fluoroethylene carbonate(FEC)/Methyl acetate(MA) electrolyte solution. LiPO2F2, characterized by its poor solubility and strong binding with Li+, demonstrates a pronounced tendency to integrate into the primary solvation sheath of Li+. Moreover, the synergy between LiTFSI and LiPO2F2 establishes a dual anion configuration, unveiling a dual anion‐driven mechanism. This mechanism significantly diminishes the interaction between Li+ and solvent molecules, resulting in reduced desolvation energy under low temperatures. The ACCE exhibits high ionic conductivity of 1.3 mS cm−1 at −50 °C, enabling stable cycling of Li/NCM811 cells at −50 °C, and further allows 0.75 Ah graphite(Gr)/LiNi0.8Co0.1Mn0.1O2(NCM811) batteries dischargeable at −40 °C. This study presents a practical application potential for poorly soluble lithium salts and provides a new avenue for designing electrolytes suitable for low‐temperature applications. A novel ACCE is proposed, leveraging LiPO2F2’s low solubility and strong binding to Li+, accelerating Li+ de‐solvation process. This forms a LiF‐rich, phosphate‐rich CEI film, enabling lithium‐ion batteries to cycle at −50 °C extremely low temperature.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202400337</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7001-2926</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-08, Vol.34 (33), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3093374604
source Wiley-Blackwell Read & Publish Collection
subjects Anions
electrolyte
Electrolytes
Electrolytic cells
Freezing
Ion currents
Lithium
lithium difluorophosphate
Lithium-ion batteries
Low temperature
Sheaths
Solvation
solvation structure
Temperature
title Anion‐Dominated Conventional‐Concentrations Electrolyte to Improve Low‐Temperature Performance of Lithium‐Ion Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A22%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anion%E2%80%90Dominated%20Conventional%E2%80%90Concentrations%20Electrolyte%20to%20Improve%20Low%E2%80%90Temperature%20Performance%20of%20Lithium%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Chen,%20Nan&rft.date=2024-08-01&rft.volume=34&rft.issue=33&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202400337&rft_dat=%3Cproquest_cross%3E3093374604%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2727-eabda7d4a7ada480d9fbbe6abef575642ea78925e545d6689d7cbf0d239d4f2e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3093374604&rft_id=info:pmid/&rfr_iscdi=true