Loading…

A Biodegradable Piezoelectric Sensor for Real‐Time Evaluation of the Motor Function Recovery After Nerve Injury

Nerve injury can lead to defects in related motor functions. It is critical to achieve long‐term and convenient real‐time evaluation of motor function recovery status during nerve injury repair. In this study, an implantable PLLA/BTO piezoelectric sensor (PBPS) with good biodegradability and biocomp...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2024-08, Vol.34 (33), p.n/a
Main Authors: Shan, Yizhu, Wang, Engui, Cui, Xi, Xi, Yuan, Ji, Jianying, Yuan, Junlin, Xu, Lingling, Liu, Zhuo, Li, Zhou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3175-24151375e473edcd23e5311a119d6aa43c851cc72fc91237a62f4c03073bbaa23
cites cdi_FETCH-LOGICAL-c3175-24151375e473edcd23e5311a119d6aa43c851cc72fc91237a62f4c03073bbaa23
container_end_page n/a
container_issue 33
container_start_page
container_title Advanced functional materials
container_volume 34
creator Shan, Yizhu
Wang, Engui
Cui, Xi
Xi, Yuan
Ji, Jianying
Yuan, Junlin
Xu, Lingling
Liu, Zhuo
Li, Zhou
description Nerve injury can lead to defects in related motor functions. It is critical to achieve long‐term and convenient real‐time evaluation of motor function recovery status during nerve injury repair. In this study, an implantable PLLA/BTO piezoelectric sensor (PBPS) with good biodegradability and biocompatibility for real time evaluation of the motor function recovery after nerve injury is developed. PLLA fibers doped with BTO are employed as piezoelectric material in PBPS, which can convert the biomechanical signals generated by motion into electrical signals. PBPS can be implant simultaneously with commonly used tissue scaffolds for treatment in the rats with sciatic nerve injury. The linearity of the pressure and the output voltage of PBPS is ≈0.9445. For the evaluation effectiveness, as the treatment process progresses, the signals generated by PBPS exhibited good consistency with EMG signals, indicating effectively evaluation of the motor function. Moreover, the integration of PBPS and wireless module can break the limitations of time and space for sensing and realize wireless evaluation of motor function in rat. The implantable sensor based on PBPS may bring new ideas for the development of implantable bioelectronics. The PBPS composed of PLLA/BTO fibers, Mo electrodes, and PCL films is implanted subcutaneously in the leg of a rat after nerve injury. During the reparation of nerve, the deformation of PBPS happens when rats move their legs, which in turn generate the electrical signal output. After transmitted by wireless module, it can realize real‐time motor function evaluation.
doi_str_mv 10.1002/adfm.202400295
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3093374618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093374618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3175-24151375e473edcd23e5311a119d6aa43c851cc72fc91237a62f4c03073bbaa23</originalsourceid><addsrcrecordid>eNqFkM1OwkAUhSdGExHdup7ENTh3pu3QZUVQElCDmLibDNNbLSkdmLaYuvIRfEafxCIGly5u7k--c25yCDkH1gXG-KWOk2WXM-41S-gfkBYEEHQE473D_QzPx-SkKBaMgZTCa5F1RK9SG-OL07GeZ0gfUny3mKEpXWroI-aFdTRpaoo6-_r4nKVLpIONzipdpjanNqHlK9KJLRtmWOXm5zpFYzfoaholJTp6h26DdJQvKlefkqNEZwWe_fY2eRoOZv3bzvj-ZtSPxh0jQPod7oEPQvroSYGxiblAXwBogDAOtPaE6flgjOSJCYELqQOeeIYJJsV8rjUXbXKx8105u66wKNXCVi5vXirBQiGkF0Cvobo7yjhbFA4TtXLpUrtaAVPbWNU2VrWPtRGEO8FbmmH9D62i6-HkT_sNxZh85Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093374618</pqid></control><display><type>article</type><title>A Biodegradable Piezoelectric Sensor for Real‐Time Evaluation of the Motor Function Recovery After Nerve Injury</title><source>Wiley</source><creator>Shan, Yizhu ; Wang, Engui ; Cui, Xi ; Xi, Yuan ; Ji, Jianying ; Yuan, Junlin ; Xu, Lingling ; Liu, Zhuo ; Li, Zhou</creator><creatorcontrib>Shan, Yizhu ; Wang, Engui ; Cui, Xi ; Xi, Yuan ; Ji, Jianying ; Yuan, Junlin ; Xu, Lingling ; Liu, Zhuo ; Li, Zhou</creatorcontrib><description>Nerve injury can lead to defects in related motor functions. It is critical to achieve long‐term and convenient real‐time evaluation of motor function recovery status during nerve injury repair. In this study, an implantable PLLA/BTO piezoelectric sensor (PBPS) with good biodegradability and biocompatibility for real time evaluation of the motor function recovery after nerve injury is developed. PLLA fibers doped with BTO are employed as piezoelectric material in PBPS, which can convert the biomechanical signals generated by motion into electrical signals. PBPS can be implant simultaneously with commonly used tissue scaffolds for treatment in the rats with sciatic nerve injury. The linearity of the pressure and the output voltage of PBPS is ≈0.9445. For the evaluation effectiveness, as the treatment process progresses, the signals generated by PBPS exhibited good consistency with EMG signals, indicating effectively evaluation of the motor function. Moreover, the integration of PBPS and wireless module can break the limitations of time and space for sensing and realize wireless evaluation of motor function in rat. The implantable sensor based on PBPS may bring new ideas for the development of implantable bioelectronics. The PBPS composed of PLLA/BTO fibers, Mo electrodes, and PCL films is implanted subcutaneously in the leg of a rat after nerve injury. During the reparation of nerve, the deformation of PBPS happens when rats move their legs, which in turn generate the electrical signal output. After transmitted by wireless module, it can realize real‐time motor function evaluation.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202400295</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Biocompatibility ; biodegradability ; Biomechanics ; Electronic implants ; Injury prevention ; motion evaluation ; nerve injury ; Nerves ; piezoelectric sensor ; Piezoelectricity ; Polylactic acid ; Sensors</subject><ispartof>Advanced functional materials, 2024-08, Vol.34 (33), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3175-24151375e473edcd23e5311a119d6aa43c851cc72fc91237a62f4c03073bbaa23</citedby><cites>FETCH-LOGICAL-c3175-24151375e473edcd23e5311a119d6aa43c851cc72fc91237a62f4c03073bbaa23</cites><orcidid>0000-0002-9952-7296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shan, Yizhu</creatorcontrib><creatorcontrib>Wang, Engui</creatorcontrib><creatorcontrib>Cui, Xi</creatorcontrib><creatorcontrib>Xi, Yuan</creatorcontrib><creatorcontrib>Ji, Jianying</creatorcontrib><creatorcontrib>Yuan, Junlin</creatorcontrib><creatorcontrib>Xu, Lingling</creatorcontrib><creatorcontrib>Liu, Zhuo</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><title>A Biodegradable Piezoelectric Sensor for Real‐Time Evaluation of the Motor Function Recovery After Nerve Injury</title><title>Advanced functional materials</title><description>Nerve injury can lead to defects in related motor functions. It is critical to achieve long‐term and convenient real‐time evaluation of motor function recovery status during nerve injury repair. In this study, an implantable PLLA/BTO piezoelectric sensor (PBPS) with good biodegradability and biocompatibility for real time evaluation of the motor function recovery after nerve injury is developed. PLLA fibers doped with BTO are employed as piezoelectric material in PBPS, which can convert the biomechanical signals generated by motion into electrical signals. PBPS can be implant simultaneously with commonly used tissue scaffolds for treatment in the rats with sciatic nerve injury. The linearity of the pressure and the output voltage of PBPS is ≈0.9445. For the evaluation effectiveness, as the treatment process progresses, the signals generated by PBPS exhibited good consistency with EMG signals, indicating effectively evaluation of the motor function. Moreover, the integration of PBPS and wireless module can break the limitations of time and space for sensing and realize wireless evaluation of motor function in rat. The implantable sensor based on PBPS may bring new ideas for the development of implantable bioelectronics. The PBPS composed of PLLA/BTO fibers, Mo electrodes, and PCL films is implanted subcutaneously in the leg of a rat after nerve injury. During the reparation of nerve, the deformation of PBPS happens when rats move their legs, which in turn generate the electrical signal output. After transmitted by wireless module, it can realize real‐time motor function evaluation.</description><subject>Biocompatibility</subject><subject>biodegradability</subject><subject>Biomechanics</subject><subject>Electronic implants</subject><subject>Injury prevention</subject><subject>motion evaluation</subject><subject>nerve injury</subject><subject>Nerves</subject><subject>piezoelectric sensor</subject><subject>Piezoelectricity</subject><subject>Polylactic acid</subject><subject>Sensors</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwkAUhSdGExHdup7ENTh3pu3QZUVQElCDmLibDNNbLSkdmLaYuvIRfEafxCIGly5u7k--c25yCDkH1gXG-KWOk2WXM-41S-gfkBYEEHQE473D_QzPx-SkKBaMgZTCa5F1RK9SG-OL07GeZ0gfUny3mKEpXWroI-aFdTRpaoo6-_r4nKVLpIONzipdpjanNqHlK9KJLRtmWOXm5zpFYzfoaholJTp6h26DdJQvKlefkqNEZwWe_fY2eRoOZv3bzvj-ZtSPxh0jQPod7oEPQvroSYGxiblAXwBogDAOtPaE6flgjOSJCYELqQOeeIYJJsV8rjUXbXKx8105u66wKNXCVi5vXirBQiGkF0Cvobo7yjhbFA4TtXLpUrtaAVPbWNU2VrWPtRGEO8FbmmH9D62i6-HkT_sNxZh85Q</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Shan, Yizhu</creator><creator>Wang, Engui</creator><creator>Cui, Xi</creator><creator>Xi, Yuan</creator><creator>Ji, Jianying</creator><creator>Yuan, Junlin</creator><creator>Xu, Lingling</creator><creator>Liu, Zhuo</creator><creator>Li, Zhou</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9952-7296</orcidid></search><sort><creationdate>20240801</creationdate><title>A Biodegradable Piezoelectric Sensor for Real‐Time Evaluation of the Motor Function Recovery After Nerve Injury</title><author>Shan, Yizhu ; Wang, Engui ; Cui, Xi ; Xi, Yuan ; Ji, Jianying ; Yuan, Junlin ; Xu, Lingling ; Liu, Zhuo ; Li, Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3175-24151375e473edcd23e5311a119d6aa43c851cc72fc91237a62f4c03073bbaa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biocompatibility</topic><topic>biodegradability</topic><topic>Biomechanics</topic><topic>Electronic implants</topic><topic>Injury prevention</topic><topic>motion evaluation</topic><topic>nerve injury</topic><topic>Nerves</topic><topic>piezoelectric sensor</topic><topic>Piezoelectricity</topic><topic>Polylactic acid</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Yizhu</creatorcontrib><creatorcontrib>Wang, Engui</creatorcontrib><creatorcontrib>Cui, Xi</creatorcontrib><creatorcontrib>Xi, Yuan</creatorcontrib><creatorcontrib>Ji, Jianying</creatorcontrib><creatorcontrib>Yuan, Junlin</creatorcontrib><creatorcontrib>Xu, Lingling</creatorcontrib><creatorcontrib>Liu, Zhuo</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Yizhu</au><au>Wang, Engui</au><au>Cui, Xi</au><au>Xi, Yuan</au><au>Ji, Jianying</au><au>Yuan, Junlin</au><au>Xu, Lingling</au><au>Liu, Zhuo</au><au>Li, Zhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Biodegradable Piezoelectric Sensor for Real‐Time Evaluation of the Motor Function Recovery After Nerve Injury</atitle><jtitle>Advanced functional materials</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>34</volume><issue>33</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Nerve injury can lead to defects in related motor functions. It is critical to achieve long‐term and convenient real‐time evaluation of motor function recovery status during nerve injury repair. In this study, an implantable PLLA/BTO piezoelectric sensor (PBPS) with good biodegradability and biocompatibility for real time evaluation of the motor function recovery after nerve injury is developed. PLLA fibers doped with BTO are employed as piezoelectric material in PBPS, which can convert the biomechanical signals generated by motion into electrical signals. PBPS can be implant simultaneously with commonly used tissue scaffolds for treatment in the rats with sciatic nerve injury. The linearity of the pressure and the output voltage of PBPS is ≈0.9445. For the evaluation effectiveness, as the treatment process progresses, the signals generated by PBPS exhibited good consistency with EMG signals, indicating effectively evaluation of the motor function. Moreover, the integration of PBPS and wireless module can break the limitations of time and space for sensing and realize wireless evaluation of motor function in rat. The implantable sensor based on PBPS may bring new ideas for the development of implantable bioelectronics. The PBPS composed of PLLA/BTO fibers, Mo electrodes, and PCL films is implanted subcutaneously in the leg of a rat after nerve injury. During the reparation of nerve, the deformation of PBPS happens when rats move their legs, which in turn generate the electrical signal output. After transmitted by wireless module, it can realize real‐time motor function evaluation.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202400295</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9952-7296</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-08, Vol.34 (33), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3093374618
source Wiley
subjects Biocompatibility
biodegradability
Biomechanics
Electronic implants
Injury prevention
motion evaluation
nerve injury
Nerves
piezoelectric sensor
Piezoelectricity
Polylactic acid
Sensors
title A Biodegradable Piezoelectric Sensor for Real‐Time Evaluation of the Motor Function Recovery After Nerve Injury
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A35%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Biodegradable%20Piezoelectric%20Sensor%20for%20Real%E2%80%90Time%20Evaluation%20of%20the%20Motor%20Function%20Recovery%20After%20Nerve%20Injury&rft.jtitle=Advanced%20functional%20materials&rft.au=Shan,%20Yizhu&rft.date=2024-08-01&rft.volume=34&rft.issue=33&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202400295&rft_dat=%3Cproquest_cross%3E3093374618%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3175-24151375e473edcd23e5311a119d6aa43c851cc72fc91237a62f4c03073bbaa23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3093374618&rft_id=info:pmid/&rfr_iscdi=true