Loading…

Multi-objective optimization design of shaftless rim-driven thruster

This paper proposes a multi-objective optimization design method for shaftless rim-driven thruster (RDT) based on the ISIGHT platform. The pitch ratio, the blade area ratio and the advance coefficient of RDT were considered as the design optimization variables, the thrust and efficiency of the RDT w...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part M, Journal of engineering for the maritime environment Journal of engineering for the maritime environment, 2024-08, Vol.238 (3), p.633-639
Main Authors: Tao, Bian, Liangliang, Liu, Wenhao, Cai, Wen, Jiang, Zhiwen, Liu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a multi-objective optimization design method for shaftless rim-driven thruster (RDT) based on the ISIGHT platform. The pitch ratio, the blade area ratio and the advance coefficient of RDT were considered as the design optimization variables, the thrust and efficiency of the RDT were the optimization objectives. The multi-objective optimization design method was based on the surrogate module and the optimization module in the ISIGHT platform. Two analytical methods (response surface methodology (RSM) and radial basis function Model (RBF)) were used to build the surrogate model. The Muti-Island GA optimization algorithm was adopted in the optimization module. The paper indicates that both RSM model and RBF model are feasible to build the surrogate model, the RBF model has better accuracy and reliability than RSM model. The blade obtained by RBF method has larger thrust and smaller torque than that of the blade obtained by RSM method. For the large advance coefficient (J > 0.6), the efficiency of the blade obtained by RBF method is slightly higher than that of the blade obtained by RSM method.
ISSN:1475-0902
2041-3084
DOI:10.1177/14750902231188393