Loading…
Investigation of micromechanics and relaxation spectrum evolution in multiple recycled asphalt binders
Asphalt, a widely utilized binder material in pavement construction, brings notable environmental and economic advantages through its efficient and high-utilization technique of multiple recycling. Nevertheless, the microscale mechanical mechanisms and laws governing the damage evolution in asphalt...
Saved in:
Published in: | Materials and structures 2024-09, Vol.57 (7), Article 165 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c200t-d874b766abebd68cb3c986b97e00e4924e6d1a905a3cc832bc11e40ecbb907383 |
container_end_page | |
container_issue | 7 |
container_start_page | |
container_title | Materials and structures |
container_volume | 57 |
creator | Gong, Mingyang Li, Mingcheng Wang, Weiying Tan, Zhifei Sun, Yubo |
description | Asphalt, a widely utilized binder material in pavement construction, brings notable environmental and economic advantages through its efficient and high-utilization technique of multiple recycling. Nevertheless, the microscale mechanical mechanisms and laws governing the damage evolution in asphalt during repeated aging and recycling processes remain unclear, posing challenges in determining the optimal reclamation method and timing for binder maintenance. This study seeks to bridge this gap by employing microstructural numerical simulation and viscoelastic computational methods to elucidate the fundamental changes in microstructural mechanics and relaxation spectra of asphalt binders during multiple aging and regeneration processes, ultimately enhancing the design efficiency of multiple regeneration pavements. The study’s key findings revealed that aging decelerates the relaxation capacity and increases the modulus of asphalt, while regeneration reduces the modulus and enhances relaxation capacity. The initial two aging and regeneration processes significantly influenced the stress distribution in the microscopic phase of the asphalt. Following the third aging and rejuvenation, the stress threshold and area of stress concentration remained relatively unchanged. Aging and regeneration primarily alter the mechanical properties of the microscopic phase, affecting the stress relaxation capacity and complex modulus of asphalt. The present study provides a certain research basis for the micro-mechanism of multiple regeneration asphalt. |
doi_str_mv | 10.1617/s11527-024-02442-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3093886869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093886869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-d874b766abebd68cb3c986b97e00e4924e6d1a905a3cc832bc11e40ecbb907383</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouK7-AU8Bz9WkafNxlMWPBcGLnkOSTneztGlN2sX992a3gjcPwwzD887wvll2S_A9YYQ_REKqgue4KI9VFjk_yxZEcJIzwel5mmkl80pKfpldxbjDmEpCikXWrP0e4ug2enS9R32DOmdD34Hdau9sRNrXKECrv2cgDmDHMHUI9n07nVbOo25qRze0kEh7sC3USMdhq9sRGedrCPE6u2h0G-Hmty-zz-enj9Vr_vb-sl49vuW2wHjMa8FLwxnTBkzNhDXUSsGM5IAxlLIogdVES1xpaq2ghbGEQInBGiMxp4Ius7v57hD6rykZU7t-Cj69VBRLKgQTTCaqmKnkNMYAjRqC63Q4KILVMU8156lSluqUp-JJRGdRTLDfQPg7_Y_qBypuew8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093886869</pqid></control><display><type>article</type><title>Investigation of micromechanics and relaxation spectrum evolution in multiple recycled asphalt binders</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Gong, Mingyang ; Li, Mingcheng ; Wang, Weiying ; Tan, Zhifei ; Sun, Yubo</creator><creatorcontrib>Gong, Mingyang ; Li, Mingcheng ; Wang, Weiying ; Tan, Zhifei ; Sun, Yubo</creatorcontrib><description>Asphalt, a widely utilized binder material in pavement construction, brings notable environmental and economic advantages through its efficient and high-utilization technique of multiple recycling. Nevertheless, the microscale mechanical mechanisms and laws governing the damage evolution in asphalt during repeated aging and recycling processes remain unclear, posing challenges in determining the optimal reclamation method and timing for binder maintenance. This study seeks to bridge this gap by employing microstructural numerical simulation and viscoelastic computational methods to elucidate the fundamental changes in microstructural mechanics and relaxation spectra of asphalt binders during multiple aging and regeneration processes, ultimately enhancing the design efficiency of multiple regeneration pavements. The study’s key findings revealed that aging decelerates the relaxation capacity and increases the modulus of asphalt, while regeneration reduces the modulus and enhances relaxation capacity. The initial two aging and regeneration processes significantly influenced the stress distribution in the microscopic phase of the asphalt. Following the third aging and rejuvenation, the stress threshold and area of stress concentration remained relatively unchanged. Aging and regeneration primarily alter the mechanical properties of the microscopic phase, affecting the stress relaxation capacity and complex modulus of asphalt. The present study provides a certain research basis for the micro-mechanism of multiple regeneration asphalt.</description><identifier>ISSN: 1359-5997</identifier><identifier>EISSN: 1871-6873</identifier><identifier>DOI: 10.1617/s11527-024-02442-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aging ; Asphalt ; Binders (materials) ; Bridge maintenance ; Building Materials ; Civil Engineering ; Design for recycling ; Engineering ; Machines ; Manufacturing ; Materials Science ; Mechanical properties ; Micromechanics ; Original Article ; Pavement construction ; Pavements ; Processes ; Regeneration ; Solid Mechanics ; Stress concentration ; Stress distribution ; Stress relaxation ; Theoretical and Applied Mechanics</subject><ispartof>Materials and structures, 2024-09, Vol.57 (7), Article 165</ispartof><rights>The Author(s), under exclusive licence to RILEM 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-d874b766abebd68cb3c986b97e00e4924e6d1a905a3cc832bc11e40ecbb907383</cites><orcidid>0000-0001-8383-8623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27906,27907</link.rule.ids></links><search><creatorcontrib>Gong, Mingyang</creatorcontrib><creatorcontrib>Li, Mingcheng</creatorcontrib><creatorcontrib>Wang, Weiying</creatorcontrib><creatorcontrib>Tan, Zhifei</creatorcontrib><creatorcontrib>Sun, Yubo</creatorcontrib><title>Investigation of micromechanics and relaxation spectrum evolution in multiple recycled asphalt binders</title><title>Materials and structures</title><addtitle>Mater Struct</addtitle><description>Asphalt, a widely utilized binder material in pavement construction, brings notable environmental and economic advantages through its efficient and high-utilization technique of multiple recycling. Nevertheless, the microscale mechanical mechanisms and laws governing the damage evolution in asphalt during repeated aging and recycling processes remain unclear, posing challenges in determining the optimal reclamation method and timing for binder maintenance. This study seeks to bridge this gap by employing microstructural numerical simulation and viscoelastic computational methods to elucidate the fundamental changes in microstructural mechanics and relaxation spectra of asphalt binders during multiple aging and regeneration processes, ultimately enhancing the design efficiency of multiple regeneration pavements. The study’s key findings revealed that aging decelerates the relaxation capacity and increases the modulus of asphalt, while regeneration reduces the modulus and enhances relaxation capacity. The initial two aging and regeneration processes significantly influenced the stress distribution in the microscopic phase of the asphalt. Following the third aging and rejuvenation, the stress threshold and area of stress concentration remained relatively unchanged. Aging and regeneration primarily alter the mechanical properties of the microscopic phase, affecting the stress relaxation capacity and complex modulus of asphalt. The present study provides a certain research basis for the micro-mechanism of multiple regeneration asphalt.</description><subject>Aging</subject><subject>Asphalt</subject><subject>Binders (materials)</subject><subject>Bridge maintenance</subject><subject>Building Materials</subject><subject>Civil Engineering</subject><subject>Design for recycling</subject><subject>Engineering</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Micromechanics</subject><subject>Original Article</subject><subject>Pavement construction</subject><subject>Pavements</subject><subject>Processes</subject><subject>Regeneration</subject><subject>Solid Mechanics</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Stress relaxation</subject><subject>Theoretical and Applied Mechanics</subject><issn>1359-5997</issn><issn>1871-6873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhosouK7-AU8Bz9WkafNxlMWPBcGLnkOSTneztGlN2sX992a3gjcPwwzD887wvll2S_A9YYQ_REKqgue4KI9VFjk_yxZEcJIzwel5mmkl80pKfpldxbjDmEpCikXWrP0e4ug2enS9R32DOmdD34Hdau9sRNrXKECrv2cgDmDHMHUI9n07nVbOo25qRze0kEh7sC3USMdhq9sRGedrCPE6u2h0G-Hmty-zz-enj9Vr_vb-sl49vuW2wHjMa8FLwxnTBkzNhDXUSsGM5IAxlLIogdVES1xpaq2ghbGEQInBGiMxp4Ius7v57hD6rykZU7t-Cj69VBRLKgQTTCaqmKnkNMYAjRqC63Q4KILVMU8156lSluqUp-JJRGdRTLDfQPg7_Y_qBypuew8</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Gong, Mingyang</creator><creator>Li, Mingcheng</creator><creator>Wang, Weiying</creator><creator>Tan, Zhifei</creator><creator>Sun, Yubo</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-8383-8623</orcidid></search><sort><creationdate>20240901</creationdate><title>Investigation of micromechanics and relaxation spectrum evolution in multiple recycled asphalt binders</title><author>Gong, Mingyang ; Li, Mingcheng ; Wang, Weiying ; Tan, Zhifei ; Sun, Yubo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-d874b766abebd68cb3c986b97e00e4924e6d1a905a3cc832bc11e40ecbb907383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aging</topic><topic>Asphalt</topic><topic>Binders (materials)</topic><topic>Bridge maintenance</topic><topic>Building Materials</topic><topic>Civil Engineering</topic><topic>Design for recycling</topic><topic>Engineering</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Micromechanics</topic><topic>Original Article</topic><topic>Pavement construction</topic><topic>Pavements</topic><topic>Processes</topic><topic>Regeneration</topic><topic>Solid Mechanics</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Stress relaxation</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Mingyang</creatorcontrib><creatorcontrib>Li, Mingcheng</creatorcontrib><creatorcontrib>Wang, Weiying</creatorcontrib><creatorcontrib>Tan, Zhifei</creatorcontrib><creatorcontrib>Sun, Yubo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Mingyang</au><au>Li, Mingcheng</au><au>Wang, Weiying</au><au>Tan, Zhifei</au><au>Sun, Yubo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of micromechanics and relaxation spectrum evolution in multiple recycled asphalt binders</atitle><jtitle>Materials and structures</jtitle><stitle>Mater Struct</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>57</volume><issue>7</issue><artnum>165</artnum><issn>1359-5997</issn><eissn>1871-6873</eissn><abstract>Asphalt, a widely utilized binder material in pavement construction, brings notable environmental and economic advantages through its efficient and high-utilization technique of multiple recycling. Nevertheless, the microscale mechanical mechanisms and laws governing the damage evolution in asphalt during repeated aging and recycling processes remain unclear, posing challenges in determining the optimal reclamation method and timing for binder maintenance. This study seeks to bridge this gap by employing microstructural numerical simulation and viscoelastic computational methods to elucidate the fundamental changes in microstructural mechanics and relaxation spectra of asphalt binders during multiple aging and regeneration processes, ultimately enhancing the design efficiency of multiple regeneration pavements. The study’s key findings revealed that aging decelerates the relaxation capacity and increases the modulus of asphalt, while regeneration reduces the modulus and enhances relaxation capacity. The initial two aging and regeneration processes significantly influenced the stress distribution in the microscopic phase of the asphalt. Following the third aging and rejuvenation, the stress threshold and area of stress concentration remained relatively unchanged. Aging and regeneration primarily alter the mechanical properties of the microscopic phase, affecting the stress relaxation capacity and complex modulus of asphalt. The present study provides a certain research basis for the micro-mechanism of multiple regeneration asphalt.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1617/s11527-024-02442-7</doi><orcidid>https://orcid.org/0000-0001-8383-8623</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-5997 |
ispartof | Materials and structures, 2024-09, Vol.57 (7), Article 165 |
issn | 1359-5997 1871-6873 |
language | eng |
recordid | cdi_proquest_journals_3093886869 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Aging Asphalt Binders (materials) Bridge maintenance Building Materials Civil Engineering Design for recycling Engineering Machines Manufacturing Materials Science Mechanical properties Micromechanics Original Article Pavement construction Pavements Processes Regeneration Solid Mechanics Stress concentration Stress distribution Stress relaxation Theoretical and Applied Mechanics |
title | Investigation of micromechanics and relaxation spectrum evolution in multiple recycled asphalt binders |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A08%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20micromechanics%20and%20relaxation%20spectrum%20evolution%20in%20multiple%20recycled%20asphalt%20binders&rft.jtitle=Materials%20and%20structures&rft.au=Gong,%20Mingyang&rft.date=2024-09-01&rft.volume=57&rft.issue=7&rft.artnum=165&rft.issn=1359-5997&rft.eissn=1871-6873&rft_id=info:doi/10.1617/s11527-024-02442-7&rft_dat=%3Cproquest_cross%3E3093886869%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-d874b766abebd68cb3c986b97e00e4924e6d1a905a3cc832bc11e40ecbb907383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3093886869&rft_id=info:pmid/&rfr_iscdi=true |