Loading…

Investigation of micromechanics and relaxation spectrum evolution in multiple recycled asphalt binders

Asphalt, a widely utilized binder material in pavement construction, brings notable environmental and economic advantages through its efficient and high-utilization technique of multiple recycling. Nevertheless, the microscale mechanical mechanisms and laws governing the damage evolution in asphalt...

Full description

Saved in:
Bibliographic Details
Published in:Materials and structures 2024-09, Vol.57 (7), Article 165
Main Authors: Gong, Mingyang, Li, Mingcheng, Wang, Weiying, Tan, Zhifei, Sun, Yubo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-d874b766abebd68cb3c986b97e00e4924e6d1a905a3cc832bc11e40ecbb907383
container_end_page
container_issue 7
container_start_page
container_title Materials and structures
container_volume 57
creator Gong, Mingyang
Li, Mingcheng
Wang, Weiying
Tan, Zhifei
Sun, Yubo
description Asphalt, a widely utilized binder material in pavement construction, brings notable environmental and economic advantages through its efficient and high-utilization technique of multiple recycling. Nevertheless, the microscale mechanical mechanisms and laws governing the damage evolution in asphalt during repeated aging and recycling processes remain unclear, posing challenges in determining the optimal reclamation method and timing for binder maintenance. This study seeks to bridge this gap by employing microstructural numerical simulation and viscoelastic computational methods to elucidate the fundamental changes in microstructural mechanics and relaxation spectra of asphalt binders during multiple aging and regeneration processes, ultimately enhancing the design efficiency of multiple regeneration pavements. The study’s key findings revealed that aging decelerates the relaxation capacity and increases the modulus of asphalt, while regeneration reduces the modulus and enhances relaxation capacity. The initial two aging and regeneration processes significantly influenced the stress distribution in the microscopic phase of the asphalt. Following the third aging and rejuvenation, the stress threshold and area of stress concentration remained relatively unchanged. Aging and regeneration primarily alter the mechanical properties of the microscopic phase, affecting the stress relaxation capacity and complex modulus of asphalt. The present study provides a certain research basis for the micro-mechanism of multiple regeneration asphalt.
doi_str_mv 10.1617/s11527-024-02442-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3093886869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093886869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-d874b766abebd68cb3c986b97e00e4924e6d1a905a3cc832bc11e40ecbb907383</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouK7-AU8Bz9WkafNxlMWPBcGLnkOSTneztGlN2sX992a3gjcPwwzD887wvll2S_A9YYQ_REKqgue4KI9VFjk_yxZEcJIzwel5mmkl80pKfpldxbjDmEpCikXWrP0e4ug2enS9R32DOmdD34Hdau9sRNrXKECrv2cgDmDHMHUI9n07nVbOo25qRze0kEh7sC3USMdhq9sRGedrCPE6u2h0G-Hmty-zz-enj9Vr_vb-sl49vuW2wHjMa8FLwxnTBkzNhDXUSsGM5IAxlLIogdVES1xpaq2ghbGEQInBGiMxp4Ius7v57hD6rykZU7t-Cj69VBRLKgQTTCaqmKnkNMYAjRqC63Q4KILVMU8156lSluqUp-JJRGdRTLDfQPg7_Y_qBypuew8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093886869</pqid></control><display><type>article</type><title>Investigation of micromechanics and relaxation spectrum evolution in multiple recycled asphalt binders</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Gong, Mingyang ; Li, Mingcheng ; Wang, Weiying ; Tan, Zhifei ; Sun, Yubo</creator><creatorcontrib>Gong, Mingyang ; Li, Mingcheng ; Wang, Weiying ; Tan, Zhifei ; Sun, Yubo</creatorcontrib><description>Asphalt, a widely utilized binder material in pavement construction, brings notable environmental and economic advantages through its efficient and high-utilization technique of multiple recycling. Nevertheless, the microscale mechanical mechanisms and laws governing the damage evolution in asphalt during repeated aging and recycling processes remain unclear, posing challenges in determining the optimal reclamation method and timing for binder maintenance. This study seeks to bridge this gap by employing microstructural numerical simulation and viscoelastic computational methods to elucidate the fundamental changes in microstructural mechanics and relaxation spectra of asphalt binders during multiple aging and regeneration processes, ultimately enhancing the design efficiency of multiple regeneration pavements. The study’s key findings revealed that aging decelerates the relaxation capacity and increases the modulus of asphalt, while regeneration reduces the modulus and enhances relaxation capacity. The initial two aging and regeneration processes significantly influenced the stress distribution in the microscopic phase of the asphalt. Following the third aging and rejuvenation, the stress threshold and area of stress concentration remained relatively unchanged. Aging and regeneration primarily alter the mechanical properties of the microscopic phase, affecting the stress relaxation capacity and complex modulus of asphalt. The present study provides a certain research basis for the micro-mechanism of multiple regeneration asphalt.</description><identifier>ISSN: 1359-5997</identifier><identifier>EISSN: 1871-6873</identifier><identifier>DOI: 10.1617/s11527-024-02442-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aging ; Asphalt ; Binders (materials) ; Bridge maintenance ; Building Materials ; Civil Engineering ; Design for recycling ; Engineering ; Machines ; Manufacturing ; Materials Science ; Mechanical properties ; Micromechanics ; Original Article ; Pavement construction ; Pavements ; Processes ; Regeneration ; Solid Mechanics ; Stress concentration ; Stress distribution ; Stress relaxation ; Theoretical and Applied Mechanics</subject><ispartof>Materials and structures, 2024-09, Vol.57 (7), Article 165</ispartof><rights>The Author(s), under exclusive licence to RILEM 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-d874b766abebd68cb3c986b97e00e4924e6d1a905a3cc832bc11e40ecbb907383</cites><orcidid>0000-0001-8383-8623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27906,27907</link.rule.ids></links><search><creatorcontrib>Gong, Mingyang</creatorcontrib><creatorcontrib>Li, Mingcheng</creatorcontrib><creatorcontrib>Wang, Weiying</creatorcontrib><creatorcontrib>Tan, Zhifei</creatorcontrib><creatorcontrib>Sun, Yubo</creatorcontrib><title>Investigation of micromechanics and relaxation spectrum evolution in multiple recycled asphalt binders</title><title>Materials and structures</title><addtitle>Mater Struct</addtitle><description>Asphalt, a widely utilized binder material in pavement construction, brings notable environmental and economic advantages through its efficient and high-utilization technique of multiple recycling. Nevertheless, the microscale mechanical mechanisms and laws governing the damage evolution in asphalt during repeated aging and recycling processes remain unclear, posing challenges in determining the optimal reclamation method and timing for binder maintenance. This study seeks to bridge this gap by employing microstructural numerical simulation and viscoelastic computational methods to elucidate the fundamental changes in microstructural mechanics and relaxation spectra of asphalt binders during multiple aging and regeneration processes, ultimately enhancing the design efficiency of multiple regeneration pavements. The study’s key findings revealed that aging decelerates the relaxation capacity and increases the modulus of asphalt, while regeneration reduces the modulus and enhances relaxation capacity. The initial two aging and regeneration processes significantly influenced the stress distribution in the microscopic phase of the asphalt. Following the third aging and rejuvenation, the stress threshold and area of stress concentration remained relatively unchanged. Aging and regeneration primarily alter the mechanical properties of the microscopic phase, affecting the stress relaxation capacity and complex modulus of asphalt. The present study provides a certain research basis for the micro-mechanism of multiple regeneration asphalt.</description><subject>Aging</subject><subject>Asphalt</subject><subject>Binders (materials)</subject><subject>Bridge maintenance</subject><subject>Building Materials</subject><subject>Civil Engineering</subject><subject>Design for recycling</subject><subject>Engineering</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Micromechanics</subject><subject>Original Article</subject><subject>Pavement construction</subject><subject>Pavements</subject><subject>Processes</subject><subject>Regeneration</subject><subject>Solid Mechanics</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Stress relaxation</subject><subject>Theoretical and Applied Mechanics</subject><issn>1359-5997</issn><issn>1871-6873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhosouK7-AU8Bz9WkafNxlMWPBcGLnkOSTneztGlN2sX992a3gjcPwwzD887wvll2S_A9YYQ_REKqgue4KI9VFjk_yxZEcJIzwel5mmkl80pKfpldxbjDmEpCikXWrP0e4ug2enS9R32DOmdD34Hdau9sRNrXKECrv2cgDmDHMHUI9n07nVbOo25qRze0kEh7sC3USMdhq9sRGedrCPE6u2h0G-Hmty-zz-enj9Vr_vb-sl49vuW2wHjMa8FLwxnTBkzNhDXUSsGM5IAxlLIogdVES1xpaq2ghbGEQInBGiMxp4Ius7v57hD6rykZU7t-Cj69VBRLKgQTTCaqmKnkNMYAjRqC63Q4KILVMU8156lSluqUp-JJRGdRTLDfQPg7_Y_qBypuew8</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Gong, Mingyang</creator><creator>Li, Mingcheng</creator><creator>Wang, Weiying</creator><creator>Tan, Zhifei</creator><creator>Sun, Yubo</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-8383-8623</orcidid></search><sort><creationdate>20240901</creationdate><title>Investigation of micromechanics and relaxation spectrum evolution in multiple recycled asphalt binders</title><author>Gong, Mingyang ; Li, Mingcheng ; Wang, Weiying ; Tan, Zhifei ; Sun, Yubo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-d874b766abebd68cb3c986b97e00e4924e6d1a905a3cc832bc11e40ecbb907383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aging</topic><topic>Asphalt</topic><topic>Binders (materials)</topic><topic>Bridge maintenance</topic><topic>Building Materials</topic><topic>Civil Engineering</topic><topic>Design for recycling</topic><topic>Engineering</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Micromechanics</topic><topic>Original Article</topic><topic>Pavement construction</topic><topic>Pavements</topic><topic>Processes</topic><topic>Regeneration</topic><topic>Solid Mechanics</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Stress relaxation</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Mingyang</creatorcontrib><creatorcontrib>Li, Mingcheng</creatorcontrib><creatorcontrib>Wang, Weiying</creatorcontrib><creatorcontrib>Tan, Zhifei</creatorcontrib><creatorcontrib>Sun, Yubo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Mingyang</au><au>Li, Mingcheng</au><au>Wang, Weiying</au><au>Tan, Zhifei</au><au>Sun, Yubo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of micromechanics and relaxation spectrum evolution in multiple recycled asphalt binders</atitle><jtitle>Materials and structures</jtitle><stitle>Mater Struct</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>57</volume><issue>7</issue><artnum>165</artnum><issn>1359-5997</issn><eissn>1871-6873</eissn><abstract>Asphalt, a widely utilized binder material in pavement construction, brings notable environmental and economic advantages through its efficient and high-utilization technique of multiple recycling. Nevertheless, the microscale mechanical mechanisms and laws governing the damage evolution in asphalt during repeated aging and recycling processes remain unclear, posing challenges in determining the optimal reclamation method and timing for binder maintenance. This study seeks to bridge this gap by employing microstructural numerical simulation and viscoelastic computational methods to elucidate the fundamental changes in microstructural mechanics and relaxation spectra of asphalt binders during multiple aging and regeneration processes, ultimately enhancing the design efficiency of multiple regeneration pavements. The study’s key findings revealed that aging decelerates the relaxation capacity and increases the modulus of asphalt, while regeneration reduces the modulus and enhances relaxation capacity. The initial two aging and regeneration processes significantly influenced the stress distribution in the microscopic phase of the asphalt. Following the third aging and rejuvenation, the stress threshold and area of stress concentration remained relatively unchanged. Aging and regeneration primarily alter the mechanical properties of the microscopic phase, affecting the stress relaxation capacity and complex modulus of asphalt. The present study provides a certain research basis for the micro-mechanism of multiple regeneration asphalt.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1617/s11527-024-02442-7</doi><orcidid>https://orcid.org/0000-0001-8383-8623</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-5997
ispartof Materials and structures, 2024-09, Vol.57 (7), Article 165
issn 1359-5997
1871-6873
language eng
recordid cdi_proquest_journals_3093886869
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Aging
Asphalt
Binders (materials)
Bridge maintenance
Building Materials
Civil Engineering
Design for recycling
Engineering
Machines
Manufacturing
Materials Science
Mechanical properties
Micromechanics
Original Article
Pavement construction
Pavements
Processes
Regeneration
Solid Mechanics
Stress concentration
Stress distribution
Stress relaxation
Theoretical and Applied Mechanics
title Investigation of micromechanics and relaxation spectrum evolution in multiple recycled asphalt binders
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A08%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20micromechanics%20and%20relaxation%20spectrum%20evolution%20in%20multiple%20recycled%20asphalt%20binders&rft.jtitle=Materials%20and%20structures&rft.au=Gong,%20Mingyang&rft.date=2024-09-01&rft.volume=57&rft.issue=7&rft.artnum=165&rft.issn=1359-5997&rft.eissn=1871-6873&rft_id=info:doi/10.1617/s11527-024-02442-7&rft_dat=%3Cproquest_cross%3E3093886869%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-d874b766abebd68cb3c986b97e00e4924e6d1a905a3cc832bc11e40ecbb907383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3093886869&rft_id=info:pmid/&rfr_iscdi=true