Loading…
Effect of Transient Spark Discharge and Plasma Activated Water Treatments against Fusarium graminearum Infected Wheat Grains under Laboratory Conditions
Over the last decade, more and more attention has been paid to applications of non-thermal plasma in agriculture, where it is used to decontaminate various microorganisms and to improve the seed germination. In this study, we present the results of a newly developed point-to-ring NTP transient spark...
Saved in:
Published in: | Plasma chemistry and plasma processing 2024, Vol.44 (4), p.1689-1712 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Over the last decade, more and more attention has been paid to applications of non-thermal plasma in agriculture, where it is used to decontaminate various microorganisms and to improve the seed germination. In this study, we present the results of a newly developed point-to-ring NTP transient spark discharge apparatus (NTP), plasma activated water (PAW) and their combined treatment on Durum wheat and Common wheat grains under laboratory conditions. Transient spark discharge treatment was used as direct treatment while indirect treatment of wheat grains was performed by PAW produced in point-to-plane NTP transient spark apparatus. We found that the degree of grain surface decontamination was in order NTP > PAW > combined treatment. In the case of Durum wheat grain germination, all treatments increased germination with increasing exposure times, while in the case of Common wheat, PAW treatment and combined treatment did not significantly increase the grain germination. In conclusion, plasma treatment has enormous potential for use in agriculture and its possibilities need to be fully explored. |
---|---|
ISSN: | 0272-4324 1572-8986 |
DOI: | 10.1007/s11090-024-10479-3 |