Loading…

Commercial vehicle disc brake temperature prediction model construction based on machine learning

The process of conducting thermal-mechanical coupling finite element analysis for commercial vehicle disc brakes is both complex and time-consuming. Moreover, real vehicle testing conditions are diverse, and there are limitations in data collection, impeding a comprehensive understanding of the enti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2024-08, Vol.2825 (1), p.012016
Main Authors: Han, Jinliang, Ling, He, Sun, Xiao, Zou, Lin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page 012016
container_title Journal of physics. Conference series
container_volume 2825
creator Han, Jinliang
Ling, He
Sun, Xiao
Zou, Lin
description The process of conducting thermal-mechanical coupling finite element analysis for commercial vehicle disc brakes is both complex and time-consuming. Moreover, real vehicle testing conditions are diverse, and there are limitations in data collection, impeding a comprehensive understanding of the entire braking process. A pioneering approach is proposed, blending thermal-mechanical coupling finite element simulation with machine learning algorithms, to construct an innovative model for predicting brake temperatures. Employing advanced machine learning algorithms: Random Forest, XGBoost, and CatBoost, the study successfully developed a highly accurate model for predicting the temporal temperature variations at special nodes. The model was evaluated against four quantitative benchmarks, revealing that the Random Forest-based model stands out in terms of both accuracy and stability.
doi_str_mv 10.1088/1742-6596/2825/1/012016
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_3093894934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093894934</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1566-3c915334ecffada634737fc71a399c85d5e70acb57a901e65b4c589cea4616403</originalsourceid><addsrcrecordid>eNptkFtLxDAQhYMouK7-BgO-CbVJc2nyKMUrCwrqc0jTqZu1N9PW329LZUVwXmaYc84MfAidU3JFiVIxTXkSSaFlnKhExDQmNCFUHqDVXjncz0odo5O-3xHCpkpXyGZtXUNw3lb4C7beVYAL3zucB_sBeIC6g2CHMQDuAhTeDb5tcN0WUGHXNv0QxmWV2x4KPGvWbX0DuAIbGt-8n6Kj0lY9nP30NXq7vXnN7qPN091Ddr2JPBVSRsxpKhjj4MrSFlYynrK0dCm1TGunRCEgJdblIrWaUJAi504o7cBySSUnbI0ulrtdaD9H6Aeza8fQTC8NI5opzTXjk4stLt92vwZKzMzSzJTMTMzMLA01C8spdflP6vE5e_lrNF1Rsm9i7HWr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093894934</pqid></control><display><type>article</type><title>Commercial vehicle disc brake temperature prediction model construction based on machine learning</title><source>Access via ProQuest (Open Access)</source><source>Free Full-Text Journals in Chemistry</source><creator>Han, Jinliang ; Ling, He ; Sun, Xiao ; Zou, Lin</creator><creatorcontrib>Han, Jinliang ; Ling, He ; Sun, Xiao ; Zou, Lin</creatorcontrib><description>The process of conducting thermal-mechanical coupling finite element analysis for commercial vehicle disc brakes is both complex and time-consuming. Moreover, real vehicle testing conditions are diverse, and there are limitations in data collection, impeding a comprehensive understanding of the entire braking process. A pioneering approach is proposed, blending thermal-mechanical coupling finite element simulation with machine learning algorithms, to construct an innovative model for predicting brake temperatures. Employing advanced machine learning algorithms: Random Forest, XGBoost, and CatBoost, the study successfully developed a highly accurate model for predicting the temporal temperature variations at special nodes. The model was evaluated against four quantitative benchmarks, revealing that the Random Forest-based model stands out in terms of both accuracy and stability.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2825/1/012016</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Commercial vehicles ; Coupling ; Disc brakes ; Finite element method ; Machine learning ; Prediction models ; Predictions ; Thermal simulation</subject><ispartof>Journal of physics. Conference series, 2024-08, Vol.2825 (1), p.012016</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3093894934?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Han, Jinliang</creatorcontrib><creatorcontrib>Ling, He</creatorcontrib><creatorcontrib>Sun, Xiao</creatorcontrib><creatorcontrib>Zou, Lin</creatorcontrib><title>Commercial vehicle disc brake temperature prediction model construction based on machine learning</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The process of conducting thermal-mechanical coupling finite element analysis for commercial vehicle disc brakes is both complex and time-consuming. Moreover, real vehicle testing conditions are diverse, and there are limitations in data collection, impeding a comprehensive understanding of the entire braking process. A pioneering approach is proposed, blending thermal-mechanical coupling finite element simulation with machine learning algorithms, to construct an innovative model for predicting brake temperatures. Employing advanced machine learning algorithms: Random Forest, XGBoost, and CatBoost, the study successfully developed a highly accurate model for predicting the temporal temperature variations at special nodes. The model was evaluated against four quantitative benchmarks, revealing that the Random Forest-based model stands out in terms of both accuracy and stability.</description><subject>Algorithms</subject><subject>Commercial vehicles</subject><subject>Coupling</subject><subject>Disc brakes</subject><subject>Finite element method</subject><subject>Machine learning</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Thermal simulation</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkFtLxDAQhYMouK7-BgO-CbVJc2nyKMUrCwrqc0jTqZu1N9PW329LZUVwXmaYc84MfAidU3JFiVIxTXkSSaFlnKhExDQmNCFUHqDVXjncz0odo5O-3xHCpkpXyGZtXUNw3lb4C7beVYAL3zucB_sBeIC6g2CHMQDuAhTeDb5tcN0WUGHXNv0QxmWV2x4KPGvWbX0DuAIbGt-8n6Kj0lY9nP30NXq7vXnN7qPN091Ddr2JPBVSRsxpKhjj4MrSFlYynrK0dCm1TGunRCEgJdblIrWaUJAi504o7cBySSUnbI0ulrtdaD9H6Aeza8fQTC8NI5opzTXjk4stLt92vwZKzMzSzJTMTMzMLA01C8spdflP6vE5e_lrNF1Rsm9i7HWr</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Han, Jinliang</creator><creator>Ling, He</creator><creator>Sun, Xiao</creator><creator>Zou, Lin</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240801</creationdate><title>Commercial vehicle disc brake temperature prediction model construction based on machine learning</title><author>Han, Jinliang ; Ling, He ; Sun, Xiao ; Zou, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1566-3c915334ecffada634737fc71a399c85d5e70acb57a901e65b4c589cea4616403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Commercial vehicles</topic><topic>Coupling</topic><topic>Disc brakes</topic><topic>Finite element method</topic><topic>Machine learning</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Thermal simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Jinliang</creatorcontrib><creatorcontrib>Ling, He</creatorcontrib><creatorcontrib>Sun, Xiao</creatorcontrib><creatorcontrib>Zou, Lin</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Jinliang</au><au>Ling, He</au><au>Sun, Xiao</au><au>Zou, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Commercial vehicle disc brake temperature prediction model construction based on machine learning</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>2825</volume><issue>1</issue><spage>012016</spage><pages>012016-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The process of conducting thermal-mechanical coupling finite element analysis for commercial vehicle disc brakes is both complex and time-consuming. Moreover, real vehicle testing conditions are diverse, and there are limitations in data collection, impeding a comprehensive understanding of the entire braking process. A pioneering approach is proposed, blending thermal-mechanical coupling finite element simulation with machine learning algorithms, to construct an innovative model for predicting brake temperatures. Employing advanced machine learning algorithms: Random Forest, XGBoost, and CatBoost, the study successfully developed a highly accurate model for predicting the temporal temperature variations at special nodes. The model was evaluated against four quantitative benchmarks, revealing that the Random Forest-based model stands out in terms of both accuracy and stability.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2825/1/012016</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2024-08, Vol.2825 (1), p.012016
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_3093894934
source Access via ProQuest (Open Access); Free Full-Text Journals in Chemistry
subjects Algorithms
Commercial vehicles
Coupling
Disc brakes
Finite element method
Machine learning
Prediction models
Predictions
Thermal simulation
title Commercial vehicle disc brake temperature prediction model construction based on machine learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A09%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Commercial%20vehicle%20disc%20brake%20temperature%20prediction%20model%20construction%20based%20on%20machine%20learning&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Han,%20Jinliang&rft.date=2024-08-01&rft.volume=2825&rft.issue=1&rft.spage=012016&rft.pages=012016-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2825/1/012016&rft_dat=%3Cproquest_iop_j%3E3093894934%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1566-3c915334ecffada634737fc71a399c85d5e70acb57a901e65b4c589cea4616403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3093894934&rft_id=info:pmid/&rfr_iscdi=true