Loading…

Robust Risk Management via Multi-marginal Optimal Transport

We study the problem of maximizing a spectral risk measure of a given output function which depends on several underlying variables, whose individual distributions are known but whose joint distribution is not. We establish and exploit an equivalence between this problem and a multi-marginal optimal...

Full description

Saved in:
Bibliographic Details
Published in:Journal of optimization theory and applications 2024-08, Vol.202 (2), p.554-581
Main Authors: Ennaji, Hamza, MĂ©rigot, Quentin, Nenna, Luca, Pass, Brendan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the problem of maximizing a spectral risk measure of a given output function which depends on several underlying variables, whose individual distributions are known but whose joint distribution is not. We establish and exploit an equivalence between this problem and a multi-marginal optimal transport problem. We use this reformulation to establish explicit, closed form solutions when the underlying variables are one dimensional, for a large class of output functions. For higher dimensional underlying variables, we identify conditions on the output function and marginal distributions under which solutions concentrate on graphs over the first variable and are unique, and, for general output functions, we find upper bounds on the dimension of the support of the solution. We also establish a stability result on the maximal value and maximizing joint distributions when the output function, marginal distributions and spectral function are perturbed; in addition, when the variables one dimensional, we show that the optimal value exhibits Lipschitz dependence on the marginal distributions for a certain class of output functions. Finally, we show that the equivalence to a multi-marginal optimal transport problem extends to maximal correlation measures of multi-dimensional risks; in this setting, we again establish conditions under which the solution concentrates on a graph over the first marginal.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-024-02438-x