Loading…
Cross-linked Electrospun Gel Polymer Electrolytes for Lithium-Ion Batteries
Lithium-ion batteries (LIBs) benefit from an effective electrolyte system design in both terms of their safety and energy storage capability. Herein, a series of precursor membranes with high porosity were produced using electrospinning technology by mixing PVDF and triblock copolymer (PS-PEO-PS), r...
Saved in:
Published in: | Chinese journal of polymer science 2024, Vol.42 (8), p.1021-1028 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-d2bafc17d42fb6a66b4d46444ed3f63b201032dfe8abd279b04144de42b7e8493 |
container_end_page | 1028 |
container_issue | 8 |
container_start_page | 1021 |
container_title | Chinese journal of polymer science |
container_volume | 42 |
creator | Gong, Xue Xiao, Qin Li, Qing-Yin Liang, Wen-Cui Chen, Feng Li, Long-Yu Ren, Shi-Jie |
description | Lithium-ion batteries (LIBs) benefit from an effective electrolyte system design in both terms of their safety and energy storage capability. Herein, a series of precursor membranes with high porosity were produced using electrospinning technology by mixing PVDF and triblock copolymer (PS-PEO-PS), resulting in a porous structure with good interconnections, which facilitates the absorbency of a large amount of electrolyte and further increases the ionic conductivity of gel polymer electrolytes (GPEs). It has been demonstrated that post-cross-linking of the precursor membranes increases the rigidity of the nanofibers, which allows the polymer film to be dimensionally stable up to 260 °C while maintaining superior electrochemical properties. The obtained cross-linked GPEs (CGPEs) showed high ionic conductivity up to 4.53×10
−3
S·cm
−1
. With the CGPE-25, the assembled Li/LiFePO
4
half cells exhibited good rate capability and maintained a capacity of 99.4% and a coulombic efficiency of 99.3% at 0.1 C. These results suggest that the combination of electrospinning technique and post-cross-linking is an effective method to construct polymer electrolytes with high thermal stability and steadily decent electrochemical performance, particularly useful for Lithium-ion battery applications that require high-temperature usage. |
doi_str_mv | 10.1007/s10118-024-3136-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3094039505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094039505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-d2bafc17d42fb6a66b4d46444ed3f63b201032dfe8abd279b04144de42b7e8493</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9giMRvO9sVORqigVFSCAWYrji-QkibFTob-e1IFxMR00qv3Q_cwdingWgCYmyhAiIyDRK6E0lwesZlAlXMtQR2zGchUc6NNfsrOYtwAaDSpmbGnRehi5E3dfpJP7hsq-1HYDW2ypCZ56Zr9lsKv3ux7iknVhWRd9x_1sOWrrk3uir6nUFM8ZydV0US6-Llz9vZw_7p45Ovn5Wpxu-al1FnPvXRFVQrjUVZOF1o79KgRkbyqtHISBCjpK8oK56XJHaBA9ITSGcowV3N2NfXuQvc1UOztphtCO05aBTmCylNIR5eYXOXhw0CV3YV6W4S9FWAPzOzEzI7M7IGZlWNGTpk4ett3Cn_N_4e-AayIbso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094039505</pqid></control><display><type>article</type><title>Cross-linked Electrospun Gel Polymer Electrolytes for Lithium-Ion Batteries</title><source>Springer Nature</source><creator>Gong, Xue ; Xiao, Qin ; Li, Qing-Yin ; Liang, Wen-Cui ; Chen, Feng ; Li, Long-Yu ; Ren, Shi-Jie</creator><creatorcontrib>Gong, Xue ; Xiao, Qin ; Li, Qing-Yin ; Liang, Wen-Cui ; Chen, Feng ; Li, Long-Yu ; Ren, Shi-Jie</creatorcontrib><description>Lithium-ion batteries (LIBs) benefit from an effective electrolyte system design in both terms of their safety and energy storage capability. Herein, a series of precursor membranes with high porosity were produced using electrospinning technology by mixing PVDF and triblock copolymer (PS-PEO-PS), resulting in a porous structure with good interconnections, which facilitates the absorbency of a large amount of electrolyte and further increases the ionic conductivity of gel polymer electrolytes (GPEs). It has been demonstrated that post-cross-linking of the precursor membranes increases the rigidity of the nanofibers, which allows the polymer film to be dimensionally stable up to 260 °C while maintaining superior electrochemical properties. The obtained cross-linked GPEs (CGPEs) showed high ionic conductivity up to 4.53×10
−3
S·cm
−1
. With the CGPE-25, the assembled Li/LiFePO
4
half cells exhibited good rate capability and maintained a capacity of 99.4% and a coulombic efficiency of 99.3% at 0.1 C. These results suggest that the combination of electrospinning technique and post-cross-linking is an effective method to construct polymer electrolytes with high thermal stability and steadily decent electrochemical performance, particularly useful for Lithium-ion battery applications that require high-temperature usage.</description><identifier>ISSN: 0256-7679</identifier><identifier>EISSN: 1439-6203</identifier><identifier>DOI: 10.1007/s10118-024-3136-2</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Block copolymers ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Crosslinking ; Dimensional stability ; Electrochemical analysis ; Electrolytes ; Electrolytic cells ; Electrospinning ; High temperature ; Industrial Chemistry/Chemical Engineering ; Ion currents ; Lithium ; Lithium-ion batteries ; Membranes ; Polymer films ; Polymer Sciences ; Polymers ; Polystyrene resins ; Prepolymers ; Research Article ; Systems design ; Thermal stability</subject><ispartof>Chinese journal of polymer science, 2024, Vol.42 (8), p.1021-1028</ispartof><rights>Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences 2024</rights><rights>Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-d2bafc17d42fb6a66b4d46444ed3f63b201032dfe8abd279b04144de42b7e8493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Gong, Xue</creatorcontrib><creatorcontrib>Xiao, Qin</creatorcontrib><creatorcontrib>Li, Qing-Yin</creatorcontrib><creatorcontrib>Liang, Wen-Cui</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Li, Long-Yu</creatorcontrib><creatorcontrib>Ren, Shi-Jie</creatorcontrib><title>Cross-linked Electrospun Gel Polymer Electrolytes for Lithium-Ion Batteries</title><title>Chinese journal of polymer science</title><addtitle>Chin J Polym Sci</addtitle><description>Lithium-ion batteries (LIBs) benefit from an effective electrolyte system design in both terms of their safety and energy storage capability. Herein, a series of precursor membranes with high porosity were produced using electrospinning technology by mixing PVDF and triblock copolymer (PS-PEO-PS), resulting in a porous structure with good interconnections, which facilitates the absorbency of a large amount of electrolyte and further increases the ionic conductivity of gel polymer electrolytes (GPEs). It has been demonstrated that post-cross-linking of the precursor membranes increases the rigidity of the nanofibers, which allows the polymer film to be dimensionally stable up to 260 °C while maintaining superior electrochemical properties. The obtained cross-linked GPEs (CGPEs) showed high ionic conductivity up to 4.53×10
−3
S·cm
−1
. With the CGPE-25, the assembled Li/LiFePO
4
half cells exhibited good rate capability and maintained a capacity of 99.4% and a coulombic efficiency of 99.3% at 0.1 C. These results suggest that the combination of electrospinning technique and post-cross-linking is an effective method to construct polymer electrolytes with high thermal stability and steadily decent electrochemical performance, particularly useful for Lithium-ion battery applications that require high-temperature usage.</description><subject>Block copolymers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crosslinking</subject><subject>Dimensional stability</subject><subject>Electrochemical analysis</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Electrospinning</subject><subject>High temperature</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Membranes</subject><subject>Polymer films</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Polystyrene resins</subject><subject>Prepolymers</subject><subject>Research Article</subject><subject>Systems design</subject><subject>Thermal stability</subject><issn>0256-7679</issn><issn>1439-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqXwA9giMRvO9sVORqigVFSCAWYrji-QkibFTob-e1IFxMR00qv3Q_cwdingWgCYmyhAiIyDRK6E0lwesZlAlXMtQR2zGchUc6NNfsrOYtwAaDSpmbGnRehi5E3dfpJP7hsq-1HYDW2ypCZ56Zr9lsKv3ux7iknVhWRd9x_1sOWrrk3uir6nUFM8ZydV0US6-Llz9vZw_7p45Ovn5Wpxu-al1FnPvXRFVQrjUVZOF1o79KgRkbyqtHISBCjpK8oK56XJHaBA9ITSGcowV3N2NfXuQvc1UOztphtCO05aBTmCylNIR5eYXOXhw0CV3YV6W4S9FWAPzOzEzI7M7IGZlWNGTpk4ett3Cn_N_4e-AayIbso</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gong, Xue</creator><creator>Xiao, Qin</creator><creator>Li, Qing-Yin</creator><creator>Liang, Wen-Cui</creator><creator>Chen, Feng</creator><creator>Li, Long-Yu</creator><creator>Ren, Shi-Jie</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Cross-linked Electrospun Gel Polymer Electrolytes for Lithium-Ion Batteries</title><author>Gong, Xue ; Xiao, Qin ; Li, Qing-Yin ; Liang, Wen-Cui ; Chen, Feng ; Li, Long-Yu ; Ren, Shi-Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-d2bafc17d42fb6a66b4d46444ed3f63b201032dfe8abd279b04144de42b7e8493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Block copolymers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crosslinking</topic><topic>Dimensional stability</topic><topic>Electrochemical analysis</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Electrospinning</topic><topic>High temperature</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Membranes</topic><topic>Polymer films</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Polystyrene resins</topic><topic>Prepolymers</topic><topic>Research Article</topic><topic>Systems design</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Xue</creatorcontrib><creatorcontrib>Xiao, Qin</creatorcontrib><creatorcontrib>Li, Qing-Yin</creatorcontrib><creatorcontrib>Liang, Wen-Cui</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Li, Long-Yu</creatorcontrib><creatorcontrib>Ren, Shi-Jie</creatorcontrib><collection>CrossRef</collection><jtitle>Chinese journal of polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Xue</au><au>Xiao, Qin</au><au>Li, Qing-Yin</au><au>Liang, Wen-Cui</au><au>Chen, Feng</au><au>Li, Long-Yu</au><au>Ren, Shi-Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-linked Electrospun Gel Polymer Electrolytes for Lithium-Ion Batteries</atitle><jtitle>Chinese journal of polymer science</jtitle><stitle>Chin J Polym Sci</stitle><date>2024</date><risdate>2024</risdate><volume>42</volume><issue>8</issue><spage>1021</spage><epage>1028</epage><pages>1021-1028</pages><issn>0256-7679</issn><eissn>1439-6203</eissn><abstract>Lithium-ion batteries (LIBs) benefit from an effective electrolyte system design in both terms of their safety and energy storage capability. Herein, a series of precursor membranes with high porosity were produced using electrospinning technology by mixing PVDF and triblock copolymer (PS-PEO-PS), resulting in a porous structure with good interconnections, which facilitates the absorbency of a large amount of electrolyte and further increases the ionic conductivity of gel polymer electrolytes (GPEs). It has been demonstrated that post-cross-linking of the precursor membranes increases the rigidity of the nanofibers, which allows the polymer film to be dimensionally stable up to 260 °C while maintaining superior electrochemical properties. The obtained cross-linked GPEs (CGPEs) showed high ionic conductivity up to 4.53×10
−3
S·cm
−1
. With the CGPE-25, the assembled Li/LiFePO
4
half cells exhibited good rate capability and maintained a capacity of 99.4% and a coulombic efficiency of 99.3% at 0.1 C. These results suggest that the combination of electrospinning technique and post-cross-linking is an effective method to construct polymer electrolytes with high thermal stability and steadily decent electrochemical performance, particularly useful for Lithium-ion battery applications that require high-temperature usage.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s10118-024-3136-2</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-7679 |
ispartof | Chinese journal of polymer science, 2024, Vol.42 (8), p.1021-1028 |
issn | 0256-7679 1439-6203 |
language | eng |
recordid | cdi_proquest_journals_3094039505 |
source | Springer Nature |
subjects | Block copolymers Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Condensed Matter Physics Crosslinking Dimensional stability Electrochemical analysis Electrolytes Electrolytic cells Electrospinning High temperature Industrial Chemistry/Chemical Engineering Ion currents Lithium Lithium-ion batteries Membranes Polymer films Polymer Sciences Polymers Polystyrene resins Prepolymers Research Article Systems design Thermal stability |
title | Cross-linked Electrospun Gel Polymer Electrolytes for Lithium-Ion Batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-linked%20Electrospun%20Gel%20Polymer%20Electrolytes%20for%20Lithium-Ion%20Batteries&rft.jtitle=Chinese%20journal%20of%20polymer%20science&rft.au=Gong,%20Xue&rft.date=2024&rft.volume=42&rft.issue=8&rft.spage=1021&rft.epage=1028&rft.pages=1021-1028&rft.issn=0256-7679&rft.eissn=1439-6203&rft_id=info:doi/10.1007/s10118-024-3136-2&rft_dat=%3Cproquest_cross%3E3094039505%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-d2bafc17d42fb6a66b4d46444ed3f63b201032dfe8abd279b04144de42b7e8493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3094039505&rft_id=info:pmid/&rfr_iscdi=true |