Loading…

Robot Learning From Demonstration for Assembly With Sequential Assembly Movement Primitives

To facilitate the labor-consuming flexible assembly lines with robots, the robot learning from demonstration (LfD) is the promising way to efficiently impart human assembly skills to robots. Aiming at the challenging complex precise assembly tasks, which are contact-rich and require 6-D movement, an...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ASME transactions on mechatronics 2024-08, Vol.29 (4), p.2685-2696
Main Authors: Hu, Haopeng, Yan, Hengyuan, Yang, Xiansheng, Lou, Yunjiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c247t-1986c1ed5cca133484c4ea880e6b534afab978e4942b029168755b70f9aa97a93
container_end_page 2696
container_issue 4
container_start_page 2685
container_title IEEE/ASME transactions on mechatronics
container_volume 29
creator Hu, Haopeng
Yan, Hengyuan
Yang, Xiansheng
Lou, Yunjiang
description To facilitate the labor-consuming flexible assembly lines with robots, the robot learning from demonstration (LfD) is the promising way to efficiently impart human assembly skills to robots. Aiming at the challenging complex precise assembly tasks, which are contact-rich and require 6-D movement, an LfD method is proposed here. Due to the inconsistent requirements for the robot's assembly movement, the whole robotic assembly processes are composed of three phases, namely, the approaching, aligning, and assembling phase. The policies, which are prestructured by the proposed sequential assembly movement primitives, are learned exclusively to guide the robot's movement in each phase. In the approaching phase, the policy generates a reliable path for the robot to accurately track. However, in the aligning and assembling phase, the polices enable the robot's active compliant behavior to accomplish the complex precise assembly task. Robotic assembly experiments with four objects are conducted to validate the proposed LfD methods with a torque-controlled robot. Experiment results indicate that the proposed LfD method applied with the proposed policies achieves high reliability and efficiency.
doi_str_mv 10.1109/TMECH.2023.3336520
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3094517473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10358362</ieee_id><sourcerecordid>3094517473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-1986c1ed5cca133484c4ea880e6b534afab978e4942b029168755b70f9aa97a93</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWKtfQDwEPG_N393kKLW1QouiFQUPIbvOakp3o0la6Ld3awt6mmHmvZnHD6FzSgaUEn01n42GkwEjjA8457lk5AD1qBY0I1S8HnY9UTwTgstjdBLjghAiKKE99PboS5_wFGxoXfuBx8E3-AYa38YUbHK-xbUP-DpGaMrlBr-49Imf4HsFbXJ2-beY-TU03RA_BNe45NYQT9FRbZcRzva1j57Ho_lwkk3vb--G19OsYqJIGdUqryi8y6qylHOhRCXAKkUgLyUXtralLhQILVhJmKa5KqQsC1Jra3VhNe-jy93dr-C7YDGZhV-FtntpONFC0kIUvFOxnaoKPsYAtfnqktqwMZSYLUTzC9FsIZo9xM50sTM5APhn4FLxnPEfKExuXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094517473</pqid></control><display><type>article</type><title>Robot Learning From Demonstration for Assembly With Sequential Assembly Movement Primitives</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hu, Haopeng ; Yan, Hengyuan ; Yang, Xiansheng ; Lou, Yunjiang</creator><creatorcontrib>Hu, Haopeng ; Yan, Hengyuan ; Yang, Xiansheng ; Lou, Yunjiang</creatorcontrib><description>To facilitate the labor-consuming flexible assembly lines with robots, the robot learning from demonstration (LfD) is the promising way to efficiently impart human assembly skills to robots. Aiming at the challenging complex precise assembly tasks, which are contact-rich and require 6-D movement, an LfD method is proposed here. Due to the inconsistent requirements for the robot's assembly movement, the whole robotic assembly processes are composed of three phases, namely, the approaching, aligning, and assembling phase. The policies, which are prestructured by the proposed sequential assembly movement primitives, are learned exclusively to guide the robot's movement in each phase. In the approaching phase, the policy generates a reliable path for the robot to accurately track. However, in the aligning and assembling phase, the polices enable the robot's active compliant behavior to accomplish the complex precise assembly task. Robotic assembly experiments with four objects are conducted to validate the proposed LfD methods with a torque-controlled robot. Experiment results indicate that the proposed LfD method applied with the proposed policies achieves high reliability and efficiency.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2023.3336520</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active control ; Assembly lines ; Behavioral sciences ; Compliant control ; flexible manufacturing ; Human motion ; learning from demonstration (LfD) ; Manufacturing engineering ; Policies ; Quaternions ; Reliability ; Robot learning ; Robotic assembly ; Robots ; Task analysis ; Task complexity</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-08, Vol.29 (4), p.2685-2696</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-1986c1ed5cca133484c4ea880e6b534afab978e4942b029168755b70f9aa97a93</cites><orcidid>0000-0002-7123-6745 ; 0000-0001-8203-7795 ; 0000-0002-4069-6431 ; 0000-0002-6836-4498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10358362$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Hu, Haopeng</creatorcontrib><creatorcontrib>Yan, Hengyuan</creatorcontrib><creatorcontrib>Yang, Xiansheng</creatorcontrib><creatorcontrib>Lou, Yunjiang</creatorcontrib><title>Robot Learning From Demonstration for Assembly With Sequential Assembly Movement Primitives</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>To facilitate the labor-consuming flexible assembly lines with robots, the robot learning from demonstration (LfD) is the promising way to efficiently impart human assembly skills to robots. Aiming at the challenging complex precise assembly tasks, which are contact-rich and require 6-D movement, an LfD method is proposed here. Due to the inconsistent requirements for the robot's assembly movement, the whole robotic assembly processes are composed of three phases, namely, the approaching, aligning, and assembling phase. The policies, which are prestructured by the proposed sequential assembly movement primitives, are learned exclusively to guide the robot's movement in each phase. In the approaching phase, the policy generates a reliable path for the robot to accurately track. However, in the aligning and assembling phase, the polices enable the robot's active compliant behavior to accomplish the complex precise assembly task. Robotic assembly experiments with four objects are conducted to validate the proposed LfD methods with a torque-controlled robot. Experiment results indicate that the proposed LfD method applied with the proposed policies achieves high reliability and efficiency.</description><subject>Active control</subject><subject>Assembly lines</subject><subject>Behavioral sciences</subject><subject>Compliant control</subject><subject>flexible manufacturing</subject><subject>Human motion</subject><subject>learning from demonstration (LfD)</subject><subject>Manufacturing engineering</subject><subject>Policies</subject><subject>Quaternions</subject><subject>Reliability</subject><subject>Robot learning</subject><subject>Robotic assembly</subject><subject>Robots</subject><subject>Task analysis</subject><subject>Task complexity</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LAzEQxYMoWKtfQDwEPG_N393kKLW1QouiFQUPIbvOakp3o0la6Ld3awt6mmHmvZnHD6FzSgaUEn01n42GkwEjjA8457lk5AD1qBY0I1S8HnY9UTwTgstjdBLjghAiKKE99PboS5_wFGxoXfuBx8E3-AYa38YUbHK-xbUP-DpGaMrlBr-49Imf4HsFbXJ2-beY-TU03RA_BNe45NYQT9FRbZcRzva1j57Ho_lwkk3vb--G19OsYqJIGdUqryi8y6qylHOhRCXAKkUgLyUXtralLhQILVhJmKa5KqQsC1Jra3VhNe-jy93dr-C7YDGZhV-FtntpONFC0kIUvFOxnaoKPsYAtfnqktqwMZSYLUTzC9FsIZo9xM50sTM5APhn4FLxnPEfKExuXg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Hu, Haopeng</creator><creator>Yan, Hengyuan</creator><creator>Yang, Xiansheng</creator><creator>Lou, Yunjiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7123-6745</orcidid><orcidid>https://orcid.org/0000-0001-8203-7795</orcidid><orcidid>https://orcid.org/0000-0002-4069-6431</orcidid><orcidid>https://orcid.org/0000-0002-6836-4498</orcidid></search><sort><creationdate>20240801</creationdate><title>Robot Learning From Demonstration for Assembly With Sequential Assembly Movement Primitives</title><author>Hu, Haopeng ; Yan, Hengyuan ; Yang, Xiansheng ; Lou, Yunjiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-1986c1ed5cca133484c4ea880e6b534afab978e4942b029168755b70f9aa97a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Active control</topic><topic>Assembly lines</topic><topic>Behavioral sciences</topic><topic>Compliant control</topic><topic>flexible manufacturing</topic><topic>Human motion</topic><topic>learning from demonstration (LfD)</topic><topic>Manufacturing engineering</topic><topic>Policies</topic><topic>Quaternions</topic><topic>Reliability</topic><topic>Robot learning</topic><topic>Robotic assembly</topic><topic>Robots</topic><topic>Task analysis</topic><topic>Task complexity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Haopeng</creatorcontrib><creatorcontrib>Yan, Hengyuan</creatorcontrib><creatorcontrib>Yang, Xiansheng</creatorcontrib><creatorcontrib>Lou, Yunjiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Haopeng</au><au>Yan, Hengyuan</au><au>Yang, Xiansheng</au><au>Lou, Yunjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robot Learning From Demonstration for Assembly With Sequential Assembly Movement Primitives</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>29</volume><issue>4</issue><spage>2685</spage><epage>2696</epage><pages>2685-2696</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>To facilitate the labor-consuming flexible assembly lines with robots, the robot learning from demonstration (LfD) is the promising way to efficiently impart human assembly skills to robots. Aiming at the challenging complex precise assembly tasks, which are contact-rich and require 6-D movement, an LfD method is proposed here. Due to the inconsistent requirements for the robot's assembly movement, the whole robotic assembly processes are composed of three phases, namely, the approaching, aligning, and assembling phase. The policies, which are prestructured by the proposed sequential assembly movement primitives, are learned exclusively to guide the robot's movement in each phase. In the approaching phase, the policy generates a reliable path for the robot to accurately track. However, in the aligning and assembling phase, the polices enable the robot's active compliant behavior to accomplish the complex precise assembly task. Robotic assembly experiments with four objects are conducted to validate the proposed LfD methods with a torque-controlled robot. Experiment results indicate that the proposed LfD method applied with the proposed policies achieves high reliability and efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2023.3336520</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7123-6745</orcidid><orcidid>https://orcid.org/0000-0001-8203-7795</orcidid><orcidid>https://orcid.org/0000-0002-4069-6431</orcidid><orcidid>https://orcid.org/0000-0002-6836-4498</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2024-08, Vol.29 (4), p.2685-2696
issn 1083-4435
1941-014X
language eng
recordid cdi_proquest_journals_3094517473
source IEEE Electronic Library (IEL) Journals
subjects Active control
Assembly lines
Behavioral sciences
Compliant control
flexible manufacturing
Human motion
learning from demonstration (LfD)
Manufacturing engineering
Policies
Quaternions
Reliability
Robot learning
Robotic assembly
Robots
Task analysis
Task complexity
title Robot Learning From Demonstration for Assembly With Sequential Assembly Movement Primitives
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robot%20Learning%20From%20Demonstration%20for%20Assembly%20With%20Sequential%20Assembly%20Movement%20Primitives&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Hu,%20Haopeng&rft.date=2024-08-01&rft.volume=29&rft.issue=4&rft.spage=2685&rft.epage=2696&rft.pages=2685-2696&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2023.3336520&rft_dat=%3Cproquest_cross%3E3094517473%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c247t-1986c1ed5cca133484c4ea880e6b534afab978e4942b029168755b70f9aa97a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3094517473&rft_id=info:pmid/&rft_ieee_id=10358362&rfr_iscdi=true