Loading…
Robot Learning From Demonstration for Assembly With Sequential Assembly Movement Primitives
To facilitate the labor-consuming flexible assembly lines with robots, the robot learning from demonstration (LfD) is the promising way to efficiently impart human assembly skills to robots. Aiming at the challenging complex precise assembly tasks, which are contact-rich and require 6-D movement, an...
Saved in:
Published in: | IEEE/ASME transactions on mechatronics 2024-08, Vol.29 (4), p.2685-2696 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c247t-1986c1ed5cca133484c4ea880e6b534afab978e4942b029168755b70f9aa97a93 |
container_end_page | 2696 |
container_issue | 4 |
container_start_page | 2685 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 29 |
creator | Hu, Haopeng Yan, Hengyuan Yang, Xiansheng Lou, Yunjiang |
description | To facilitate the labor-consuming flexible assembly lines with robots, the robot learning from demonstration (LfD) is the promising way to efficiently impart human assembly skills to robots. Aiming at the challenging complex precise assembly tasks, which are contact-rich and require 6-D movement, an LfD method is proposed here. Due to the inconsistent requirements for the robot's assembly movement, the whole robotic assembly processes are composed of three phases, namely, the approaching, aligning, and assembling phase. The policies, which are prestructured by the proposed sequential assembly movement primitives, are learned exclusively to guide the robot's movement in each phase. In the approaching phase, the policy generates a reliable path for the robot to accurately track. However, in the aligning and assembling phase, the polices enable the robot's active compliant behavior to accomplish the complex precise assembly task. Robotic assembly experiments with four objects are conducted to validate the proposed LfD methods with a torque-controlled robot. Experiment results indicate that the proposed LfD method applied with the proposed policies achieves high reliability and efficiency. |
doi_str_mv | 10.1109/TMECH.2023.3336520 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3094517473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10358362</ieee_id><sourcerecordid>3094517473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-1986c1ed5cca133484c4ea880e6b534afab978e4942b029168755b70f9aa97a93</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWKtfQDwEPG_N393kKLW1QouiFQUPIbvOakp3o0la6Ld3awt6mmHmvZnHD6FzSgaUEn01n42GkwEjjA8457lk5AD1qBY0I1S8HnY9UTwTgstjdBLjghAiKKE99PboS5_wFGxoXfuBx8E3-AYa38YUbHK-xbUP-DpGaMrlBr-49Imf4HsFbXJ2-beY-TU03RA_BNe45NYQT9FRbZcRzva1j57Ho_lwkk3vb--G19OsYqJIGdUqryi8y6qylHOhRCXAKkUgLyUXtralLhQILVhJmKa5KqQsC1Jra3VhNe-jy93dr-C7YDGZhV-FtntpONFC0kIUvFOxnaoKPsYAtfnqktqwMZSYLUTzC9FsIZo9xM50sTM5APhn4FLxnPEfKExuXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094517473</pqid></control><display><type>article</type><title>Robot Learning From Demonstration for Assembly With Sequential Assembly Movement Primitives</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hu, Haopeng ; Yan, Hengyuan ; Yang, Xiansheng ; Lou, Yunjiang</creator><creatorcontrib>Hu, Haopeng ; Yan, Hengyuan ; Yang, Xiansheng ; Lou, Yunjiang</creatorcontrib><description>To facilitate the labor-consuming flexible assembly lines with robots, the robot learning from demonstration (LfD) is the promising way to efficiently impart human assembly skills to robots. Aiming at the challenging complex precise assembly tasks, which are contact-rich and require 6-D movement, an LfD method is proposed here. Due to the inconsistent requirements for the robot's assembly movement, the whole robotic assembly processes are composed of three phases, namely, the approaching, aligning, and assembling phase. The policies, which are prestructured by the proposed sequential assembly movement primitives, are learned exclusively to guide the robot's movement in each phase. In the approaching phase, the policy generates a reliable path for the robot to accurately track. However, in the aligning and assembling phase, the polices enable the robot's active compliant behavior to accomplish the complex precise assembly task. Robotic assembly experiments with four objects are conducted to validate the proposed LfD methods with a torque-controlled robot. Experiment results indicate that the proposed LfD method applied with the proposed policies achieves high reliability and efficiency.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2023.3336520</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active control ; Assembly lines ; Behavioral sciences ; Compliant control ; flexible manufacturing ; Human motion ; learning from demonstration (LfD) ; Manufacturing engineering ; Policies ; Quaternions ; Reliability ; Robot learning ; Robotic assembly ; Robots ; Task analysis ; Task complexity</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-08, Vol.29 (4), p.2685-2696</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-1986c1ed5cca133484c4ea880e6b534afab978e4942b029168755b70f9aa97a93</cites><orcidid>0000-0002-7123-6745 ; 0000-0001-8203-7795 ; 0000-0002-4069-6431 ; 0000-0002-6836-4498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10358362$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Hu, Haopeng</creatorcontrib><creatorcontrib>Yan, Hengyuan</creatorcontrib><creatorcontrib>Yang, Xiansheng</creatorcontrib><creatorcontrib>Lou, Yunjiang</creatorcontrib><title>Robot Learning From Demonstration for Assembly With Sequential Assembly Movement Primitives</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>To facilitate the labor-consuming flexible assembly lines with robots, the robot learning from demonstration (LfD) is the promising way to efficiently impart human assembly skills to robots. Aiming at the challenging complex precise assembly tasks, which are contact-rich and require 6-D movement, an LfD method is proposed here. Due to the inconsistent requirements for the robot's assembly movement, the whole robotic assembly processes are composed of three phases, namely, the approaching, aligning, and assembling phase. The policies, which are prestructured by the proposed sequential assembly movement primitives, are learned exclusively to guide the robot's movement in each phase. In the approaching phase, the policy generates a reliable path for the robot to accurately track. However, in the aligning and assembling phase, the polices enable the robot's active compliant behavior to accomplish the complex precise assembly task. Robotic assembly experiments with four objects are conducted to validate the proposed LfD methods with a torque-controlled robot. Experiment results indicate that the proposed LfD method applied with the proposed policies achieves high reliability and efficiency.</description><subject>Active control</subject><subject>Assembly lines</subject><subject>Behavioral sciences</subject><subject>Compliant control</subject><subject>flexible manufacturing</subject><subject>Human motion</subject><subject>learning from demonstration (LfD)</subject><subject>Manufacturing engineering</subject><subject>Policies</subject><subject>Quaternions</subject><subject>Reliability</subject><subject>Robot learning</subject><subject>Robotic assembly</subject><subject>Robots</subject><subject>Task analysis</subject><subject>Task complexity</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LAzEQxYMoWKtfQDwEPG_N393kKLW1QouiFQUPIbvOakp3o0la6Ld3awt6mmHmvZnHD6FzSgaUEn01n42GkwEjjA8457lk5AD1qBY0I1S8HnY9UTwTgstjdBLjghAiKKE99PboS5_wFGxoXfuBx8E3-AYa38YUbHK-xbUP-DpGaMrlBr-49Imf4HsFbXJ2-beY-TU03RA_BNe45NYQT9FRbZcRzva1j57Ho_lwkk3vb--G19OsYqJIGdUqryi8y6qylHOhRCXAKkUgLyUXtralLhQILVhJmKa5KqQsC1Jra3VhNe-jy93dr-C7YDGZhV-FtntpONFC0kIUvFOxnaoKPsYAtfnqktqwMZSYLUTzC9FsIZo9xM50sTM5APhn4FLxnPEfKExuXg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Hu, Haopeng</creator><creator>Yan, Hengyuan</creator><creator>Yang, Xiansheng</creator><creator>Lou, Yunjiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7123-6745</orcidid><orcidid>https://orcid.org/0000-0001-8203-7795</orcidid><orcidid>https://orcid.org/0000-0002-4069-6431</orcidid><orcidid>https://orcid.org/0000-0002-6836-4498</orcidid></search><sort><creationdate>20240801</creationdate><title>Robot Learning From Demonstration for Assembly With Sequential Assembly Movement Primitives</title><author>Hu, Haopeng ; Yan, Hengyuan ; Yang, Xiansheng ; Lou, Yunjiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-1986c1ed5cca133484c4ea880e6b534afab978e4942b029168755b70f9aa97a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Active control</topic><topic>Assembly lines</topic><topic>Behavioral sciences</topic><topic>Compliant control</topic><topic>flexible manufacturing</topic><topic>Human motion</topic><topic>learning from demonstration (LfD)</topic><topic>Manufacturing engineering</topic><topic>Policies</topic><topic>Quaternions</topic><topic>Reliability</topic><topic>Robot learning</topic><topic>Robotic assembly</topic><topic>Robots</topic><topic>Task analysis</topic><topic>Task complexity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Haopeng</creatorcontrib><creatorcontrib>Yan, Hengyuan</creatorcontrib><creatorcontrib>Yang, Xiansheng</creatorcontrib><creatorcontrib>Lou, Yunjiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Haopeng</au><au>Yan, Hengyuan</au><au>Yang, Xiansheng</au><au>Lou, Yunjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robot Learning From Demonstration for Assembly With Sequential Assembly Movement Primitives</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>29</volume><issue>4</issue><spage>2685</spage><epage>2696</epage><pages>2685-2696</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>To facilitate the labor-consuming flexible assembly lines with robots, the robot learning from demonstration (LfD) is the promising way to efficiently impart human assembly skills to robots. Aiming at the challenging complex precise assembly tasks, which are contact-rich and require 6-D movement, an LfD method is proposed here. Due to the inconsistent requirements for the robot's assembly movement, the whole robotic assembly processes are composed of three phases, namely, the approaching, aligning, and assembling phase. The policies, which are prestructured by the proposed sequential assembly movement primitives, are learned exclusively to guide the robot's movement in each phase. In the approaching phase, the policy generates a reliable path for the robot to accurately track. However, in the aligning and assembling phase, the polices enable the robot's active compliant behavior to accomplish the complex precise assembly task. Robotic assembly experiments with four objects are conducted to validate the proposed LfD methods with a torque-controlled robot. Experiment results indicate that the proposed LfD method applied with the proposed policies achieves high reliability and efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2023.3336520</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7123-6745</orcidid><orcidid>https://orcid.org/0000-0001-8203-7795</orcidid><orcidid>https://orcid.org/0000-0002-4069-6431</orcidid><orcidid>https://orcid.org/0000-0002-6836-4498</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2024-08, Vol.29 (4), p.2685-2696 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_proquest_journals_3094517473 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Active control Assembly lines Behavioral sciences Compliant control flexible manufacturing Human motion learning from demonstration (LfD) Manufacturing engineering Policies Quaternions Reliability Robot learning Robotic assembly Robots Task analysis Task complexity |
title | Robot Learning From Demonstration for Assembly With Sequential Assembly Movement Primitives |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robot%20Learning%20From%20Demonstration%20for%20Assembly%20With%20Sequential%20Assembly%20Movement%20Primitives&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Hu,%20Haopeng&rft.date=2024-08-01&rft.volume=29&rft.issue=4&rft.spage=2685&rft.epage=2696&rft.pages=2685-2696&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2023.3336520&rft_dat=%3Cproquest_cross%3E3094517473%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c247t-1986c1ed5cca133484c4ea880e6b534afab978e4942b029168755b70f9aa97a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3094517473&rft_id=info:pmid/&rft_ieee_id=10358362&rfr_iscdi=true |