Loading…
Coefficient problem for generalised fractional operator
This article explores a specific category of analytic functions defined by a generalised fractional operator. The class to be studied is the strongly close-to-convex functions involving Hadamard products. The second and third terms of the coefficients are determined and coefficient problems of the F...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3189 |
creator | Issa, Ammar S. Darus, Maslina |
description | This article explores a specific category of analytic functions defined by a generalised fractional operator. The class to be studied is the strongly close-to-convex functions involving Hadamard products. The second and third terms of the coefficients are determined and coefficient problems of the Fekete-Szegö functional are solved. Methods used in defining a class and solving problems include convolutions, equating functional coefficients, and basic calculus. |
doi_str_mv | 10.1063/5.0225099 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3094533220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094533220</sourcerecordid><originalsourceid>FETCH-LOGICAL-p639-b4f3fe881a6fec0869ffe0736d7ea6eb920a35716c6dd5683233ff374aa2e6d83</originalsourceid><addsrcrecordid>eNotkEFLxDAUhIMoWFcP_oOCN6HrS16TNEcpugoLXvbgLaTti3TpNjXpHvz3dtk9DQzD8M0w9shhzUHhi1yDEBKMuWIZl5IXWnF1zTIAUxaixO9bdpfSHkAYrauM6TqQ933b0zjnUwzNQIfch5j_0EjRDX2iLvfRtXMfRjfkYVrcOcR7duPdkOjhoiu2e3_b1R_F9mvzWb9ui0mhKZrSo6eq4k55aqFSxnsCjarT5BQ1RoBDqblqVddJVaFA9B516Zwg1VW4Yk_n2gXt90hptvtwjAtIsrgskohCwJJ6PqdS28_uRGqn2B9c_LMc7OkXK-3lF_wHXo9Udg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3094533220</pqid></control><display><type>conference_proceeding</type><title>Coefficient problem for generalised fractional operator</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Issa, Ammar S. ; Darus, Maslina</creator><contributor>Daud, Wan Suhana Wan ; Ghazali, Najah ; Bakar, Nor Ashikin Abu ; Yahya, Zainab ; Zaimi, Wan Mohd Khairy Adly Wan ; Muhamad, Wan Zuki Azman Wan ; Amin, Nor Azrita Mohd</contributor><creatorcontrib>Issa, Ammar S. ; Darus, Maslina ; Daud, Wan Suhana Wan ; Ghazali, Najah ; Bakar, Nor Ashikin Abu ; Yahya, Zainab ; Zaimi, Wan Mohd Khairy Adly Wan ; Muhamad, Wan Zuki Azman Wan ; Amin, Nor Azrita Mohd</creatorcontrib><description>This article explores a specific category of analytic functions defined by a generalised fractional operator. The class to be studied is the strongly close-to-convex functions involving Hadamard products. The second and third terms of the coefficients are determined and coefficient problems of the Fekete-Szegö functional are solved. Methods used in defining a class and solving problems include convolutions, equating functional coefficients, and basic calculus.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0225099</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Analytic functions ; Functionals ; Operators (mathematics) ; Problem solving</subject><ispartof>AIP Conference Proceedings, 2024, Vol.3189 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Daud, Wan Suhana Wan</contributor><contributor>Ghazali, Najah</contributor><contributor>Bakar, Nor Ashikin Abu</contributor><contributor>Yahya, Zainab</contributor><contributor>Zaimi, Wan Mohd Khairy Adly Wan</contributor><contributor>Muhamad, Wan Zuki Azman Wan</contributor><contributor>Amin, Nor Azrita Mohd</contributor><creatorcontrib>Issa, Ammar S.</creatorcontrib><creatorcontrib>Darus, Maslina</creatorcontrib><title>Coefficient problem for generalised fractional operator</title><title>AIP Conference Proceedings</title><description>This article explores a specific category of analytic functions defined by a generalised fractional operator. The class to be studied is the strongly close-to-convex functions involving Hadamard products. The second and third terms of the coefficients are determined and coefficient problems of the Fekete-Szegö functional are solved. Methods used in defining a class and solving problems include convolutions, equating functional coefficients, and basic calculus.</description><subject>Analytic functions</subject><subject>Functionals</subject><subject>Operators (mathematics)</subject><subject>Problem solving</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEFLxDAUhIMoWFcP_oOCN6HrS16TNEcpugoLXvbgLaTti3TpNjXpHvz3dtk9DQzD8M0w9shhzUHhi1yDEBKMuWIZl5IXWnF1zTIAUxaixO9bdpfSHkAYrauM6TqQ933b0zjnUwzNQIfch5j_0EjRDX2iLvfRtXMfRjfkYVrcOcR7duPdkOjhoiu2e3_b1R_F9mvzWb9ui0mhKZrSo6eq4k55aqFSxnsCjarT5BQ1RoBDqblqVddJVaFA9B516Zwg1VW4Yk_n2gXt90hptvtwjAtIsrgskohCwJJ6PqdS28_uRGqn2B9c_LMc7OkXK-3lF_wHXo9Udg</recordid><startdate>20240819</startdate><enddate>20240819</enddate><creator>Issa, Ammar S.</creator><creator>Darus, Maslina</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240819</creationdate><title>Coefficient problem for generalised fractional operator</title><author>Issa, Ammar S. ; Darus, Maslina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p639-b4f3fe881a6fec0869ffe0736d7ea6eb920a35716c6dd5683233ff374aa2e6d83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analytic functions</topic><topic>Functionals</topic><topic>Operators (mathematics)</topic><topic>Problem solving</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Issa, Ammar S.</creatorcontrib><creatorcontrib>Darus, Maslina</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Issa, Ammar S.</au><au>Darus, Maslina</au><au>Daud, Wan Suhana Wan</au><au>Ghazali, Najah</au><au>Bakar, Nor Ashikin Abu</au><au>Yahya, Zainab</au><au>Zaimi, Wan Mohd Khairy Adly Wan</au><au>Muhamad, Wan Zuki Azman Wan</au><au>Amin, Nor Azrita Mohd</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Coefficient problem for generalised fractional operator</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-08-19</date><risdate>2024</risdate><volume>3189</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This article explores a specific category of analytic functions defined by a generalised fractional operator. The class to be studied is the strongly close-to-convex functions involving Hadamard products. The second and third terms of the coefficients are determined and coefficient problems of the Fekete-Szegö functional are solved. Methods used in defining a class and solving problems include convolutions, equating functional coefficients, and basic calculus.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0225099</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2024, Vol.3189 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3094533220 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Analytic functions Functionals Operators (mathematics) Problem solving |
title | Coefficient problem for generalised fractional operator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Coefficient%20problem%20for%20generalised%20fractional%20operator&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Issa,%20Ammar%20S.&rft.date=2024-08-19&rft.volume=3189&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0225099&rft_dat=%3Cproquest_scita%3E3094533220%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p639-b4f3fe881a6fec0869ffe0736d7ea6eb920a35716c6dd5683233ff374aa2e6d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3094533220&rft_id=info:pmid/&rfr_iscdi=true |