Loading…

Oxygen vacancy-triggered performance enhancement of toluene oxidation over Cu catalysts: a combined kinetics and mechanistic investigation

Oxygen vacancy regulation in metal catalysts has emerged as a crucial strategy for efficiently degrading volatile organic compounds (VOCs), while the acquisition of kinetic and mechanistic insights into the oxygen vacancy roles remains highly desirable yet challenging. Herein, we conduct a combined...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-08, Vol.12 (33), p.21884-21894
Main Authors: Zhang, Xiangxue, Fei, Nina, Wang, Qianhong, Khan, Ali Raza, Chen, Wenyao, Qian, Gang, Zhang, Jing, Chen, De, Duan, Xuezhi, Zhou, Xinggui, Yuan, Weikang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c148t-b7d5d6569d765fce255dbebd1f37acf6f860b367a52ad7dfed8cd7e1bb794c6b3
container_end_page 21894
container_issue 33
container_start_page 21884
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Zhang, Xiangxue
Fei, Nina
Wang, Qianhong
Khan, Ali Raza
Chen, Wenyao
Qian, Gang
Zhang, Jing
Chen, De
Duan, Xuezhi
Zhou, Xinggui
Yuan, Weikang
description Oxygen vacancy regulation in metal catalysts has emerged as a crucial strategy for efficiently degrading volatile organic compounds (VOCs), while the acquisition of kinetic and mechanistic insights into the oxygen vacancy roles remains highly desirable yet challenging. Herein, we conduct a combined kinetics and mechanistic investigation into the oxygen vacancy effects of Cu catalysts on toluene oxidation. Cu catalysts with varying oxygen vacancy contents are prepared using three representative metal oxide supports, including reducible ZrO 2 with strong oxygen storage capacity, reducible ZnO, and unreducible Al 2 O 3 . Toluene oxidation and CO oxidation are tested for these catalysts, revealing the superior catalytic activity of the Cu/ZrO 2 catalyst. Multiple characterization studies demonstrate that the strong reducibility and abundance of oxygen vacancies within the Cu/ZrO 2 catalyst are the key factors for these reactions. A redox-based kinetics strategy is further applied to decouple the reduction and oxidation steps, thus affording a rate diagram to elucidate the promotional effects of oxygen vacancies on toluene decomposition. Additionally, in situ DRIFTS study unveils the reaction pathway, showing the transformation from toluene into benzyl alcohol, benzaldehyde, benzoate, phenol, anhydride, carbonate, and ultimately CO 2 . As a result, the oxygen vacancy-tuned rate-relevant step is disclosed, shifting from C–H bond cleavage for the Cu/Al 2 O 3 catalyst with limited oxygen vacancies to the CO and CC bond cleavage for the Cu/ZnO and Cu/ZrO 2 catalysts with more oxygen vacancies. The kinetic and mechanistic insights gained here would help guide the design of highly efficient oxidative catalysts by tuning the oxygen vacancies of the support.
doi_str_mv 10.1039/D4TA02283A
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3094719669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094719669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-b7d5d6569d765fce255dbebd1f37acf6f860b367a52ad7dfed8cd7e1bb794c6b3</originalsourceid><addsrcrecordid>eNpFUM1KAzEYDKJgqb34BAFvwmr2L9l4K_UXhF7qeckmX9bUblKT3dJ9BZ_a1Ip-h2-GYZiBQegyJTcpyfntfbGakyyr8vkJmmSkJAkrOD3941V1jmYhrEm8ihDK-QR9LfdjCxbvhBRWjknvTduCB4W34LXzXVQBg30_YAe2x07j3m0GsIDd3ijRG2ex24HHiwFL0YvNGPpwhwWWrmuMjVEf8fdGBiyswh3IGGZCFLCxO4ik_Qm5QGdabALMfnGK3h4fVovn5HX59LKYvyYyLao-aZgqFS0pV4yWWkJWlqqBRqU6Z0JqqitKmpwyUWZCMaVBVVIxSJuG8ULSJp-iq2Pu1rvPIfbXazd4GyvrnPCCpZxSHl3XR5f0LgQPut560wk_1impD3PX_3Pn3034dqI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094719669</pqid></control><display><type>article</type><title>Oxygen vacancy-triggered performance enhancement of toluene oxidation over Cu catalysts: a combined kinetics and mechanistic investigation</title><source>Royal Society of Chemistry</source><creator>Zhang, Xiangxue ; Fei, Nina ; Wang, Qianhong ; Khan, Ali Raza ; Chen, Wenyao ; Qian, Gang ; Zhang, Jing ; Chen, De ; Duan, Xuezhi ; Zhou, Xinggui ; Yuan, Weikang</creator><creatorcontrib>Zhang, Xiangxue ; Fei, Nina ; Wang, Qianhong ; Khan, Ali Raza ; Chen, Wenyao ; Qian, Gang ; Zhang, Jing ; Chen, De ; Duan, Xuezhi ; Zhou, Xinggui ; Yuan, Weikang</creatorcontrib><description>Oxygen vacancy regulation in metal catalysts has emerged as a crucial strategy for efficiently degrading volatile organic compounds (VOCs), while the acquisition of kinetic and mechanistic insights into the oxygen vacancy roles remains highly desirable yet challenging. Herein, we conduct a combined kinetics and mechanistic investigation into the oxygen vacancy effects of Cu catalysts on toluene oxidation. Cu catalysts with varying oxygen vacancy contents are prepared using three representative metal oxide supports, including reducible ZrO 2 with strong oxygen storage capacity, reducible ZnO, and unreducible Al 2 O 3 . Toluene oxidation and CO oxidation are tested for these catalysts, revealing the superior catalytic activity of the Cu/ZrO 2 catalyst. Multiple characterization studies demonstrate that the strong reducibility and abundance of oxygen vacancies within the Cu/ZrO 2 catalyst are the key factors for these reactions. A redox-based kinetics strategy is further applied to decouple the reduction and oxidation steps, thus affording a rate diagram to elucidate the promotional effects of oxygen vacancies on toluene decomposition. Additionally, in situ DRIFTS study unveils the reaction pathway, showing the transformation from toluene into benzyl alcohol, benzaldehyde, benzoate, phenol, anhydride, carbonate, and ultimately CO 2 . As a result, the oxygen vacancy-tuned rate-relevant step is disclosed, shifting from C–H bond cleavage for the Cu/Al 2 O 3 catalyst with limited oxygen vacancies to the CO and CC bond cleavage for the Cu/ZnO and Cu/ZrO 2 catalysts with more oxygen vacancies. The kinetic and mechanistic insights gained here would help guide the design of highly efficient oxidative catalysts by tuning the oxygen vacancies of the support.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D4TA02283A</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aluminum oxide ; Benzaldehyde ; Benzoates ; Benzoic acid ; Benzyl alcohol ; Carbon dioxide ; Catalysts ; Catalytic activity ; Cleavage ; Copper ; Decomposition reactions ; Hydrogen bonds ; Kinetics ; Metal oxides ; Organic compounds ; Oxidation ; Oxygen ; Performance degradation ; Phenols ; Reaction kinetics ; Storage capacity ; Toluene ; VOCs ; Volatile organic compounds ; Zinc oxide ; Zirconium dioxide</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-08, Vol.12 (33), p.21884-21894</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-b7d5d6569d765fce255dbebd1f37acf6f860b367a52ad7dfed8cd7e1bb794c6b3</cites><orcidid>0000-0002-5843-5950 ; 0000-0001-8299-0607 ; 0000-0002-8213-4314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Xiangxue</creatorcontrib><creatorcontrib>Fei, Nina</creatorcontrib><creatorcontrib>Wang, Qianhong</creatorcontrib><creatorcontrib>Khan, Ali Raza</creatorcontrib><creatorcontrib>Chen, Wenyao</creatorcontrib><creatorcontrib>Qian, Gang</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Chen, De</creatorcontrib><creatorcontrib>Duan, Xuezhi</creatorcontrib><creatorcontrib>Zhou, Xinggui</creatorcontrib><creatorcontrib>Yuan, Weikang</creatorcontrib><title>Oxygen vacancy-triggered performance enhancement of toluene oxidation over Cu catalysts: a combined kinetics and mechanistic investigation</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Oxygen vacancy regulation in metal catalysts has emerged as a crucial strategy for efficiently degrading volatile organic compounds (VOCs), while the acquisition of kinetic and mechanistic insights into the oxygen vacancy roles remains highly desirable yet challenging. Herein, we conduct a combined kinetics and mechanistic investigation into the oxygen vacancy effects of Cu catalysts on toluene oxidation. Cu catalysts with varying oxygen vacancy contents are prepared using three representative metal oxide supports, including reducible ZrO 2 with strong oxygen storage capacity, reducible ZnO, and unreducible Al 2 O 3 . Toluene oxidation and CO oxidation are tested for these catalysts, revealing the superior catalytic activity of the Cu/ZrO 2 catalyst. Multiple characterization studies demonstrate that the strong reducibility and abundance of oxygen vacancies within the Cu/ZrO 2 catalyst are the key factors for these reactions. A redox-based kinetics strategy is further applied to decouple the reduction and oxidation steps, thus affording a rate diagram to elucidate the promotional effects of oxygen vacancies on toluene decomposition. Additionally, in situ DRIFTS study unveils the reaction pathway, showing the transformation from toluene into benzyl alcohol, benzaldehyde, benzoate, phenol, anhydride, carbonate, and ultimately CO 2 . As a result, the oxygen vacancy-tuned rate-relevant step is disclosed, shifting from C–H bond cleavage for the Cu/Al 2 O 3 catalyst with limited oxygen vacancies to the CO and CC bond cleavage for the Cu/ZnO and Cu/ZrO 2 catalysts with more oxygen vacancies. The kinetic and mechanistic insights gained here would help guide the design of highly efficient oxidative catalysts by tuning the oxygen vacancies of the support.</description><subject>Aluminum oxide</subject><subject>Benzaldehyde</subject><subject>Benzoates</subject><subject>Benzoic acid</subject><subject>Benzyl alcohol</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Cleavage</subject><subject>Copper</subject><subject>Decomposition reactions</subject><subject>Hydrogen bonds</subject><subject>Kinetics</subject><subject>Metal oxides</subject><subject>Organic compounds</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Performance degradation</subject><subject>Phenols</subject><subject>Reaction kinetics</subject><subject>Storage capacity</subject><subject>Toluene</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><subject>Zinc oxide</subject><subject>Zirconium dioxide</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFUM1KAzEYDKJgqb34BAFvwmr2L9l4K_UXhF7qeckmX9bUblKT3dJ9BZ_a1Ip-h2-GYZiBQegyJTcpyfntfbGakyyr8vkJmmSkJAkrOD3941V1jmYhrEm8ihDK-QR9LfdjCxbvhBRWjknvTduCB4W34LXzXVQBg30_YAe2x07j3m0GsIDd3ijRG2ex24HHiwFL0YvNGPpwhwWWrmuMjVEf8fdGBiyswh3IGGZCFLCxO4ik_Qm5QGdabALMfnGK3h4fVovn5HX59LKYvyYyLao-aZgqFS0pV4yWWkJWlqqBRqU6Z0JqqitKmpwyUWZCMaVBVVIxSJuG8ULSJp-iq2Pu1rvPIfbXazd4GyvrnPCCpZxSHl3XR5f0LgQPut560wk_1impD3PX_3Pn3034dqI</recordid><startdate>20240820</startdate><enddate>20240820</enddate><creator>Zhang, Xiangxue</creator><creator>Fei, Nina</creator><creator>Wang, Qianhong</creator><creator>Khan, Ali Raza</creator><creator>Chen, Wenyao</creator><creator>Qian, Gang</creator><creator>Zhang, Jing</creator><creator>Chen, De</creator><creator>Duan, Xuezhi</creator><creator>Zhou, Xinggui</creator><creator>Yuan, Weikang</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5843-5950</orcidid><orcidid>https://orcid.org/0000-0001-8299-0607</orcidid><orcidid>https://orcid.org/0000-0002-8213-4314</orcidid></search><sort><creationdate>20240820</creationdate><title>Oxygen vacancy-triggered performance enhancement of toluene oxidation over Cu catalysts: a combined kinetics and mechanistic investigation</title><author>Zhang, Xiangxue ; Fei, Nina ; Wang, Qianhong ; Khan, Ali Raza ; Chen, Wenyao ; Qian, Gang ; Zhang, Jing ; Chen, De ; Duan, Xuezhi ; Zhou, Xinggui ; Yuan, Weikang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-b7d5d6569d765fce255dbebd1f37acf6f860b367a52ad7dfed8cd7e1bb794c6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum oxide</topic><topic>Benzaldehyde</topic><topic>Benzoates</topic><topic>Benzoic acid</topic><topic>Benzyl alcohol</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Cleavage</topic><topic>Copper</topic><topic>Decomposition reactions</topic><topic>Hydrogen bonds</topic><topic>Kinetics</topic><topic>Metal oxides</topic><topic>Organic compounds</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Performance degradation</topic><topic>Phenols</topic><topic>Reaction kinetics</topic><topic>Storage capacity</topic><topic>Toluene</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><topic>Zinc oxide</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiangxue</creatorcontrib><creatorcontrib>Fei, Nina</creatorcontrib><creatorcontrib>Wang, Qianhong</creatorcontrib><creatorcontrib>Khan, Ali Raza</creatorcontrib><creatorcontrib>Chen, Wenyao</creatorcontrib><creatorcontrib>Qian, Gang</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Chen, De</creatorcontrib><creatorcontrib>Duan, Xuezhi</creatorcontrib><creatorcontrib>Zhou, Xinggui</creatorcontrib><creatorcontrib>Yuan, Weikang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiangxue</au><au>Fei, Nina</au><au>Wang, Qianhong</au><au>Khan, Ali Raza</au><au>Chen, Wenyao</au><au>Qian, Gang</au><au>Zhang, Jing</au><au>Chen, De</au><au>Duan, Xuezhi</au><au>Zhou, Xinggui</au><au>Yuan, Weikang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen vacancy-triggered performance enhancement of toluene oxidation over Cu catalysts: a combined kinetics and mechanistic investigation</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-08-20</date><risdate>2024</risdate><volume>12</volume><issue>33</issue><spage>21884</spage><epage>21894</epage><pages>21884-21894</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Oxygen vacancy regulation in metal catalysts has emerged as a crucial strategy for efficiently degrading volatile organic compounds (VOCs), while the acquisition of kinetic and mechanistic insights into the oxygen vacancy roles remains highly desirable yet challenging. Herein, we conduct a combined kinetics and mechanistic investigation into the oxygen vacancy effects of Cu catalysts on toluene oxidation. Cu catalysts with varying oxygen vacancy contents are prepared using three representative metal oxide supports, including reducible ZrO 2 with strong oxygen storage capacity, reducible ZnO, and unreducible Al 2 O 3 . Toluene oxidation and CO oxidation are tested for these catalysts, revealing the superior catalytic activity of the Cu/ZrO 2 catalyst. Multiple characterization studies demonstrate that the strong reducibility and abundance of oxygen vacancies within the Cu/ZrO 2 catalyst are the key factors for these reactions. A redox-based kinetics strategy is further applied to decouple the reduction and oxidation steps, thus affording a rate diagram to elucidate the promotional effects of oxygen vacancies on toluene decomposition. Additionally, in situ DRIFTS study unveils the reaction pathway, showing the transformation from toluene into benzyl alcohol, benzaldehyde, benzoate, phenol, anhydride, carbonate, and ultimately CO 2 . As a result, the oxygen vacancy-tuned rate-relevant step is disclosed, shifting from C–H bond cleavage for the Cu/Al 2 O 3 catalyst with limited oxygen vacancies to the CO and CC bond cleavage for the Cu/ZnO and Cu/ZrO 2 catalysts with more oxygen vacancies. The kinetic and mechanistic insights gained here would help guide the design of highly efficient oxidative catalysts by tuning the oxygen vacancies of the support.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D4TA02283A</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5843-5950</orcidid><orcidid>https://orcid.org/0000-0001-8299-0607</orcidid><orcidid>https://orcid.org/0000-0002-8213-4314</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-08, Vol.12 (33), p.21884-21894
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_3094719669
source Royal Society of Chemistry
subjects Aluminum oxide
Benzaldehyde
Benzoates
Benzoic acid
Benzyl alcohol
Carbon dioxide
Catalysts
Catalytic activity
Cleavage
Copper
Decomposition reactions
Hydrogen bonds
Kinetics
Metal oxides
Organic compounds
Oxidation
Oxygen
Performance degradation
Phenols
Reaction kinetics
Storage capacity
Toluene
VOCs
Volatile organic compounds
Zinc oxide
Zirconium dioxide
title Oxygen vacancy-triggered performance enhancement of toluene oxidation over Cu catalysts: a combined kinetics and mechanistic investigation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A27%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20vacancy-triggered%20performance%20enhancement%20of%20toluene%20oxidation%20over%20Cu%20catalysts:%20a%20combined%20kinetics%20and%20mechanistic%20investigation&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Zhang,%20Xiangxue&rft.date=2024-08-20&rft.volume=12&rft.issue=33&rft.spage=21884&rft.epage=21894&rft.pages=21884-21894&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D4TA02283A&rft_dat=%3Cproquest_cross%3E3094719669%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c148t-b7d5d6569d765fce255dbebd1f37acf6f860b367a52ad7dfed8cd7e1bb794c6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3094719669&rft_id=info:pmid/&rfr_iscdi=true