Loading…

Modelling the Distribution of Human Motion for Sign Language Assessment

Sign Language Assessment (SLA) tools are useful to aid in language learning and are underdeveloped. Previous work has focused on isolated signs or comparison against a single reference video to assess Sign Languages (SL). This paper introduces a novel SLA tool designed to evaluate the comprehensibil...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-08
Main Authors: Oliver, Cory, Sincan, Ozge Mercanoglu, Vowels, Matthew, Battisti, Alessia, Holzknecht, Franz, Tissi, Katja, Sidler-Miserez, Sandra, Haug, Tobias, Ebling, Sarah, Bowden, Richard
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Oliver, Cory
Sincan, Ozge Mercanoglu
Vowels, Matthew
Battisti, Alessia
Holzknecht, Franz
Tissi, Katja
Sidler-Miserez, Sandra
Haug, Tobias
Ebling, Sarah
Bowden, Richard
description Sign Language Assessment (SLA) tools are useful to aid in language learning and are underdeveloped. Previous work has focused on isolated signs or comparison against a single reference video to assess Sign Languages (SL). This paper introduces a novel SLA tool designed to evaluate the comprehensibility of SL by modelling the natural distribution of human motion. We train our pipeline on data from native signers and evaluate it using SL learners. We compare our results to ratings from a human raters study and find strong correlation between human ratings and our tool. We visually demonstrate our tools ability to detect anomalous results spatio-temporally, providing actionable feedback to aid in SL learning and assessment.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3094925635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094925635</sourcerecordid><originalsourceid>FETCH-proquest_journals_30949256353</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6EJOm2qX468KudF8iJjGlTTQvub8iHsDVMMxMSMY4XxWbkrEZyRF7Simr1kwInpFT6-9qGKwzEB8K9hZjsLcUrXfgNTRplA5a_3XtA1yscXCWziRpFGwRFeKoXFyQqZYDqvzHOVkeD9ddUzyDfyWFset9Cu6TOk7rsmai4oL_d70B7ZA7ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094925635</pqid></control><display><type>article</type><title>Modelling the Distribution of Human Motion for Sign Language Assessment</title><source>ProQuest - Publicly Available Content Database</source><creator>Oliver, Cory ; Sincan, Ozge Mercanoglu ; Vowels, Matthew ; Battisti, Alessia ; Holzknecht, Franz ; Tissi, Katja ; Sidler-Miserez, Sandra ; Haug, Tobias ; Ebling, Sarah ; Bowden, Richard</creator><creatorcontrib>Oliver, Cory ; Sincan, Ozge Mercanoglu ; Vowels, Matthew ; Battisti, Alessia ; Holzknecht, Franz ; Tissi, Katja ; Sidler-Miserez, Sandra ; Haug, Tobias ; Ebling, Sarah ; Bowden, Richard</creatorcontrib><description>Sign Language Assessment (SLA) tools are useful to aid in language learning and are underdeveloped. Previous work has focused on isolated signs or comparison against a single reference video to assess Sign Languages (SL). This paper introduces a novel SLA tool designed to evaluate the comprehensibility of SL by modelling the natural distribution of human motion. We train our pipeline on data from native signers and evaluate it using SL learners. We compare our results to ratings from a human raters study and find strong correlation between human ratings and our tool. We visually demonstrate our tools ability to detect anomalous results spatio-temporally, providing actionable feedback to aid in SL learning and assessment.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Human motion ; Human performance ; Learning ; Modelling ; Ratings</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3094925635?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Oliver, Cory</creatorcontrib><creatorcontrib>Sincan, Ozge Mercanoglu</creatorcontrib><creatorcontrib>Vowels, Matthew</creatorcontrib><creatorcontrib>Battisti, Alessia</creatorcontrib><creatorcontrib>Holzknecht, Franz</creatorcontrib><creatorcontrib>Tissi, Katja</creatorcontrib><creatorcontrib>Sidler-Miserez, Sandra</creatorcontrib><creatorcontrib>Haug, Tobias</creatorcontrib><creatorcontrib>Ebling, Sarah</creatorcontrib><creatorcontrib>Bowden, Richard</creatorcontrib><title>Modelling the Distribution of Human Motion for Sign Language Assessment</title><title>arXiv.org</title><description>Sign Language Assessment (SLA) tools are useful to aid in language learning and are underdeveloped. Previous work has focused on isolated signs or comparison against a single reference video to assess Sign Languages (SL). This paper introduces a novel SLA tool designed to evaluate the comprehensibility of SL by modelling the natural distribution of human motion. We train our pipeline on data from native signers and evaluate it using SL learners. We compare our results to ratings from a human raters study and find strong correlation between human ratings and our tool. We visually demonstrate our tools ability to detect anomalous results spatio-temporally, providing actionable feedback to aid in SL learning and assessment.</description><subject>Human motion</subject><subject>Human performance</subject><subject>Learning</subject><subject>Modelling</subject><subject>Ratings</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6EJOm2qX468KudF8iJjGlTTQvub8iHsDVMMxMSMY4XxWbkrEZyRF7Simr1kwInpFT6-9qGKwzEB8K9hZjsLcUrXfgNTRplA5a_3XtA1yscXCWziRpFGwRFeKoXFyQqZYDqvzHOVkeD9ddUzyDfyWFset9Cu6TOk7rsmai4oL_d70B7ZA7ig</recordid><startdate>20240819</startdate><enddate>20240819</enddate><creator>Oliver, Cory</creator><creator>Sincan, Ozge Mercanoglu</creator><creator>Vowels, Matthew</creator><creator>Battisti, Alessia</creator><creator>Holzknecht, Franz</creator><creator>Tissi, Katja</creator><creator>Sidler-Miserez, Sandra</creator><creator>Haug, Tobias</creator><creator>Ebling, Sarah</creator><creator>Bowden, Richard</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240819</creationdate><title>Modelling the Distribution of Human Motion for Sign Language Assessment</title><author>Oliver, Cory ; Sincan, Ozge Mercanoglu ; Vowels, Matthew ; Battisti, Alessia ; Holzknecht, Franz ; Tissi, Katja ; Sidler-Miserez, Sandra ; Haug, Tobias ; Ebling, Sarah ; Bowden, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30949256353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Human motion</topic><topic>Human performance</topic><topic>Learning</topic><topic>Modelling</topic><topic>Ratings</topic><toplevel>online_resources</toplevel><creatorcontrib>Oliver, Cory</creatorcontrib><creatorcontrib>Sincan, Ozge Mercanoglu</creatorcontrib><creatorcontrib>Vowels, Matthew</creatorcontrib><creatorcontrib>Battisti, Alessia</creatorcontrib><creatorcontrib>Holzknecht, Franz</creatorcontrib><creatorcontrib>Tissi, Katja</creatorcontrib><creatorcontrib>Sidler-Miserez, Sandra</creatorcontrib><creatorcontrib>Haug, Tobias</creatorcontrib><creatorcontrib>Ebling, Sarah</creatorcontrib><creatorcontrib>Bowden, Richard</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliver, Cory</au><au>Sincan, Ozge Mercanoglu</au><au>Vowels, Matthew</au><au>Battisti, Alessia</au><au>Holzknecht, Franz</au><au>Tissi, Katja</au><au>Sidler-Miserez, Sandra</au><au>Haug, Tobias</au><au>Ebling, Sarah</au><au>Bowden, Richard</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Modelling the Distribution of Human Motion for Sign Language Assessment</atitle><jtitle>arXiv.org</jtitle><date>2024-08-19</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Sign Language Assessment (SLA) tools are useful to aid in language learning and are underdeveloped. Previous work has focused on isolated signs or comparison against a single reference video to assess Sign Languages (SL). This paper introduces a novel SLA tool designed to evaluate the comprehensibility of SL by modelling the natural distribution of human motion. We train our pipeline on data from native signers and evaluate it using SL learners. We compare our results to ratings from a human raters study and find strong correlation between human ratings and our tool. We visually demonstrate our tools ability to detect anomalous results spatio-temporally, providing actionable feedback to aid in SL learning and assessment.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3094925635
source ProQuest - Publicly Available Content Database
subjects Human motion
Human performance
Learning
Modelling
Ratings
title Modelling the Distribution of Human Motion for Sign Language Assessment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Modelling%20the%20Distribution%20of%20Human%20Motion%20for%20Sign%20Language%20Assessment&rft.jtitle=arXiv.org&rft.au=Oliver,%20Cory&rft.date=2024-08-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3094925635%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30949256353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3094925635&rft_id=info:pmid/&rfr_iscdi=true