Loading…
Modelling the Distribution of Human Motion for Sign Language Assessment
Sign Language Assessment (SLA) tools are useful to aid in language learning and are underdeveloped. Previous work has focused on isolated signs or comparison against a single reference video to assess Sign Languages (SL). This paper introduces a novel SLA tool designed to evaluate the comprehensibil...
Saved in:
Published in: | arXiv.org 2024-08 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Oliver, Cory Sincan, Ozge Mercanoglu Vowels, Matthew Battisti, Alessia Holzknecht, Franz Tissi, Katja Sidler-Miserez, Sandra Haug, Tobias Ebling, Sarah Bowden, Richard |
description | Sign Language Assessment (SLA) tools are useful to aid in language learning and are underdeveloped. Previous work has focused on isolated signs or comparison against a single reference video to assess Sign Languages (SL). This paper introduces a novel SLA tool designed to evaluate the comprehensibility of SL by modelling the natural distribution of human motion. We train our pipeline on data from native signers and evaluate it using SL learners. We compare our results to ratings from a human raters study and find strong correlation between human ratings and our tool. We visually demonstrate our tools ability to detect anomalous results spatio-temporally, providing actionable feedback to aid in SL learning and assessment. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3094925635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094925635</sourcerecordid><originalsourceid>FETCH-proquest_journals_30949256353</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6EJOm2qX468KudF8iJjGlTTQvub8iHsDVMMxMSMY4XxWbkrEZyRF7Simr1kwInpFT6-9qGKwzEB8K9hZjsLcUrXfgNTRplA5a_3XtA1yscXCWziRpFGwRFeKoXFyQqZYDqvzHOVkeD9ddUzyDfyWFset9Cu6TOk7rsmai4oL_d70B7ZA7ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094925635</pqid></control><display><type>article</type><title>Modelling the Distribution of Human Motion for Sign Language Assessment</title><source>ProQuest - Publicly Available Content Database</source><creator>Oliver, Cory ; Sincan, Ozge Mercanoglu ; Vowels, Matthew ; Battisti, Alessia ; Holzknecht, Franz ; Tissi, Katja ; Sidler-Miserez, Sandra ; Haug, Tobias ; Ebling, Sarah ; Bowden, Richard</creator><creatorcontrib>Oliver, Cory ; Sincan, Ozge Mercanoglu ; Vowels, Matthew ; Battisti, Alessia ; Holzknecht, Franz ; Tissi, Katja ; Sidler-Miserez, Sandra ; Haug, Tobias ; Ebling, Sarah ; Bowden, Richard</creatorcontrib><description>Sign Language Assessment (SLA) tools are useful to aid in language learning and are underdeveloped. Previous work has focused on isolated signs or comparison against a single reference video to assess Sign Languages (SL). This paper introduces a novel SLA tool designed to evaluate the comprehensibility of SL by modelling the natural distribution of human motion. We train our pipeline on data from native signers and evaluate it using SL learners. We compare our results to ratings from a human raters study and find strong correlation between human ratings and our tool. We visually demonstrate our tools ability to detect anomalous results spatio-temporally, providing actionable feedback to aid in SL learning and assessment.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Human motion ; Human performance ; Learning ; Modelling ; Ratings</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3094925635?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Oliver, Cory</creatorcontrib><creatorcontrib>Sincan, Ozge Mercanoglu</creatorcontrib><creatorcontrib>Vowels, Matthew</creatorcontrib><creatorcontrib>Battisti, Alessia</creatorcontrib><creatorcontrib>Holzknecht, Franz</creatorcontrib><creatorcontrib>Tissi, Katja</creatorcontrib><creatorcontrib>Sidler-Miserez, Sandra</creatorcontrib><creatorcontrib>Haug, Tobias</creatorcontrib><creatorcontrib>Ebling, Sarah</creatorcontrib><creatorcontrib>Bowden, Richard</creatorcontrib><title>Modelling the Distribution of Human Motion for Sign Language Assessment</title><title>arXiv.org</title><description>Sign Language Assessment (SLA) tools are useful to aid in language learning and are underdeveloped. Previous work has focused on isolated signs or comparison against a single reference video to assess Sign Languages (SL). This paper introduces a novel SLA tool designed to evaluate the comprehensibility of SL by modelling the natural distribution of human motion. We train our pipeline on data from native signers and evaluate it using SL learners. We compare our results to ratings from a human raters study and find strong correlation between human ratings and our tool. We visually demonstrate our tools ability to detect anomalous results spatio-temporally, providing actionable feedback to aid in SL learning and assessment.</description><subject>Human motion</subject><subject>Human performance</subject><subject>Learning</subject><subject>Modelling</subject><subject>Ratings</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6EJOm2qX468KudF8iJjGlTTQvub8iHsDVMMxMSMY4XxWbkrEZyRF7Simr1kwInpFT6-9qGKwzEB8K9hZjsLcUrXfgNTRplA5a_3XtA1yscXCWziRpFGwRFeKoXFyQqZYDqvzHOVkeD9ddUzyDfyWFset9Cu6TOk7rsmai4oL_d70B7ZA7ig</recordid><startdate>20240819</startdate><enddate>20240819</enddate><creator>Oliver, Cory</creator><creator>Sincan, Ozge Mercanoglu</creator><creator>Vowels, Matthew</creator><creator>Battisti, Alessia</creator><creator>Holzknecht, Franz</creator><creator>Tissi, Katja</creator><creator>Sidler-Miserez, Sandra</creator><creator>Haug, Tobias</creator><creator>Ebling, Sarah</creator><creator>Bowden, Richard</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240819</creationdate><title>Modelling the Distribution of Human Motion for Sign Language Assessment</title><author>Oliver, Cory ; Sincan, Ozge Mercanoglu ; Vowels, Matthew ; Battisti, Alessia ; Holzknecht, Franz ; Tissi, Katja ; Sidler-Miserez, Sandra ; Haug, Tobias ; Ebling, Sarah ; Bowden, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30949256353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Human motion</topic><topic>Human performance</topic><topic>Learning</topic><topic>Modelling</topic><topic>Ratings</topic><toplevel>online_resources</toplevel><creatorcontrib>Oliver, Cory</creatorcontrib><creatorcontrib>Sincan, Ozge Mercanoglu</creatorcontrib><creatorcontrib>Vowels, Matthew</creatorcontrib><creatorcontrib>Battisti, Alessia</creatorcontrib><creatorcontrib>Holzknecht, Franz</creatorcontrib><creatorcontrib>Tissi, Katja</creatorcontrib><creatorcontrib>Sidler-Miserez, Sandra</creatorcontrib><creatorcontrib>Haug, Tobias</creatorcontrib><creatorcontrib>Ebling, Sarah</creatorcontrib><creatorcontrib>Bowden, Richard</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliver, Cory</au><au>Sincan, Ozge Mercanoglu</au><au>Vowels, Matthew</au><au>Battisti, Alessia</au><au>Holzknecht, Franz</au><au>Tissi, Katja</au><au>Sidler-Miserez, Sandra</au><au>Haug, Tobias</au><au>Ebling, Sarah</au><au>Bowden, Richard</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Modelling the Distribution of Human Motion for Sign Language Assessment</atitle><jtitle>arXiv.org</jtitle><date>2024-08-19</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Sign Language Assessment (SLA) tools are useful to aid in language learning and are underdeveloped. Previous work has focused on isolated signs or comparison against a single reference video to assess Sign Languages (SL). This paper introduces a novel SLA tool designed to evaluate the comprehensibility of SL by modelling the natural distribution of human motion. We train our pipeline on data from native signers and evaluate it using SL learners. We compare our results to ratings from a human raters study and find strong correlation between human ratings and our tool. We visually demonstrate our tools ability to detect anomalous results spatio-temporally, providing actionable feedback to aid in SL learning and assessment.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3094925635 |
source | ProQuest - Publicly Available Content Database |
subjects | Human motion Human performance Learning Modelling Ratings |
title | Modelling the Distribution of Human Motion for Sign Language Assessment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Modelling%20the%20Distribution%20of%20Human%20Motion%20for%20Sign%20Language%20Assessment&rft.jtitle=arXiv.org&rft.au=Oliver,%20Cory&rft.date=2024-08-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3094925635%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30949256353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3094925635&rft_id=info:pmid/&rfr_iscdi=true |