Loading…
Coupling human mobility and social relationships to predict individual socioeconomic status: A graph neural network approach
Understanding individual's socioeconomic status (SES) can provide supporting information for designing political and economic policies. Acquiring large‐scale economic survey data is time‐consuming and laborious. The widespread mobile phone data, which can reflect human mobility and social netwo...
Saved in:
Published in: | Transactions in GIS 2024-08, Vol.28 (5), p.1412-1438 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1909-e6a46fe0b65fb2d3204eb1a26fff6eb9e012efa544ccfaa210b5fef0c1ffa77f3 |
container_end_page | 1438 |
container_issue | 5 |
container_start_page | 1412 |
container_title | Transactions in GIS |
container_volume | 28 |
creator | Chen, Xiao Pei, Tao Song, Ci Shu, Hua Guo, Sihui Wang, Xi Liu, Yaxi Chen, Jie |
description | Understanding individual's socioeconomic status (SES) can provide supporting information for designing political and economic policies. Acquiring large‐scale economic survey data is time‐consuming and laborious. The widespread mobile phone data, which can reflect human mobility and social network characteristics, has become a low‐cost data source for researchers to infer SES. However, previous studies often oversimplify human mobility features and social network features extracted from mobile phone data into general statistical features, resulting in discounting some important temporal and relational information. Therefore, we propose a comprehensive framework for individual SES prediction that effectively utilizes a combination of human mobility and social relationships. In this framework, Word2Vec module extracts human mobility features from mobile phone positioning data, and graph neural network (GNN) module GraphSAGE captures social network characteristics constructed from call detail records. We evaluated the effectiveness of our proposed approach by training the model with real‐world data in Beijing. According to the experimental results, our proposed hybrid approach outperformed the other methods evidently, demonstrating that human mobility and social links are complementary in the characterization of SES. Coupling human mobility and social links can further deepen our understanding of cities' economic geography. |
doi_str_mv | 10.1111/tgis.13189 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3095003556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095003556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1909-e6a46fe0b65fb2d3204eb1a26fff6eb9e012efa544ccfaa210b5fef0c1ffa77f3</originalsourceid><addsrcrecordid>eNp90L1OwzAQB3ALgUQpLDyBJTakFDsfTsNWVVAqVWKgzJbjnBuX1A62Q9WBd-FZeDJSwswtd8Pv7qQ_QteUTGhfd2Gj_YQmdFqcoBFNWR4VLKen_ZwwGlE2jc_RhfdbQkiaFvkIfc5t1zbabHDd7YTBO1vqRocDFqbC3kotGuygEUFb42vdehwsbh1UWgasTaU_dNX15kgtSGvsTkvsgwidv8ez76-NE22NDXSuVwbC3ro3LNrWWSHrS3SmROPh6q-P0evjw3r-FK2eF8v5bBVJWpAiAiZSpoCULFNlXCUxSaGkImZKKQZlAYTGoESWplIqIWJKykyBIpIqJfJcJWN0M9zt37534APf2s6Z_iVPSJERkmQZ69XtoKSz3jtQvHV6J9yBU8KP8fJjvPw33h7TAe91A4d_JF8vli_Dzg8sEoKq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095003556</pqid></control><display><type>article</type><title>Coupling human mobility and social relationships to predict individual socioeconomic status: A graph neural network approach</title><source>Wiley</source><creator>Chen, Xiao ; Pei, Tao ; Song, Ci ; Shu, Hua ; Guo, Sihui ; Wang, Xi ; Liu, Yaxi ; Chen, Jie</creator><creatorcontrib>Chen, Xiao ; Pei, Tao ; Song, Ci ; Shu, Hua ; Guo, Sihui ; Wang, Xi ; Liu, Yaxi ; Chen, Jie</creatorcontrib><description>Understanding individual's socioeconomic status (SES) can provide supporting information for designing political and economic policies. Acquiring large‐scale economic survey data is time‐consuming and laborious. The widespread mobile phone data, which can reflect human mobility and social network characteristics, has become a low‐cost data source for researchers to infer SES. However, previous studies often oversimplify human mobility features and social network features extracted from mobile phone data into general statistical features, resulting in discounting some important temporal and relational information. Therefore, we propose a comprehensive framework for individual SES prediction that effectively utilizes a combination of human mobility and social relationships. In this framework, Word2Vec module extracts human mobility features from mobile phone positioning data, and graph neural network (GNN) module GraphSAGE captures social network characteristics constructed from call detail records. We evaluated the effectiveness of our proposed approach by training the model with real‐world data in Beijing. According to the experimental results, our proposed hybrid approach outperformed the other methods evidently, demonstrating that human mobility and social links are complementary in the characterization of SES. Coupling human mobility and social links can further deepen our understanding of cities' economic geography.</description><identifier>ISSN: 1361-1682</identifier><identifier>EISSN: 1467-9671</identifier><identifier>DOI: 10.1111/tgis.13189</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Cell phones ; Cellular telephones ; Coupling ; Data acquisition ; Economic policy ; Economics ; Feature extraction ; Geography ; Graph neural networks ; Information processing ; Mobility ; Modules ; Neural networks ; Social networks ; Social organization ; Socioeconomic factors ; Socioeconomic status ; Socioeconomics</subject><ispartof>Transactions in GIS, 2024-08, Vol.28 (5), p.1412-1438</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>Copyright © 2024 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1909-e6a46fe0b65fb2d3204eb1a26fff6eb9e012efa544ccfaa210b5fef0c1ffa77f3</cites><orcidid>0000-0001-5278-858X ; 0000-0002-5311-8761 ; 0000-0003-4583-3711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Pei, Tao</creatorcontrib><creatorcontrib>Song, Ci</creatorcontrib><creatorcontrib>Shu, Hua</creatorcontrib><creatorcontrib>Guo, Sihui</creatorcontrib><creatorcontrib>Wang, Xi</creatorcontrib><creatorcontrib>Liu, Yaxi</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><title>Coupling human mobility and social relationships to predict individual socioeconomic status: A graph neural network approach</title><title>Transactions in GIS</title><description>Understanding individual's socioeconomic status (SES) can provide supporting information for designing political and economic policies. Acquiring large‐scale economic survey data is time‐consuming and laborious. The widespread mobile phone data, which can reflect human mobility and social network characteristics, has become a low‐cost data source for researchers to infer SES. However, previous studies often oversimplify human mobility features and social network features extracted from mobile phone data into general statistical features, resulting in discounting some important temporal and relational information. Therefore, we propose a comprehensive framework for individual SES prediction that effectively utilizes a combination of human mobility and social relationships. In this framework, Word2Vec module extracts human mobility features from mobile phone positioning data, and graph neural network (GNN) module GraphSAGE captures social network characteristics constructed from call detail records. We evaluated the effectiveness of our proposed approach by training the model with real‐world data in Beijing. According to the experimental results, our proposed hybrid approach outperformed the other methods evidently, demonstrating that human mobility and social links are complementary in the characterization of SES. Coupling human mobility and social links can further deepen our understanding of cities' economic geography.</description><subject>Cell phones</subject><subject>Cellular telephones</subject><subject>Coupling</subject><subject>Data acquisition</subject><subject>Economic policy</subject><subject>Economics</subject><subject>Feature extraction</subject><subject>Geography</subject><subject>Graph neural networks</subject><subject>Information processing</subject><subject>Mobility</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Social networks</subject><subject>Social organization</subject><subject>Socioeconomic factors</subject><subject>Socioeconomic status</subject><subject>Socioeconomics</subject><issn>1361-1682</issn><issn>1467-9671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90L1OwzAQB3ALgUQpLDyBJTakFDsfTsNWVVAqVWKgzJbjnBuX1A62Q9WBd-FZeDJSwswtd8Pv7qQ_QteUTGhfd2Gj_YQmdFqcoBFNWR4VLKen_ZwwGlE2jc_RhfdbQkiaFvkIfc5t1zbabHDd7YTBO1vqRocDFqbC3kotGuygEUFb42vdehwsbh1UWgasTaU_dNX15kgtSGvsTkvsgwidv8ez76-NE22NDXSuVwbC3ro3LNrWWSHrS3SmROPh6q-P0evjw3r-FK2eF8v5bBVJWpAiAiZSpoCULFNlXCUxSaGkImZKKQZlAYTGoESWplIqIWJKykyBIpIqJfJcJWN0M9zt37534APf2s6Z_iVPSJERkmQZ69XtoKSz3jtQvHV6J9yBU8KP8fJjvPw33h7TAe91A4d_JF8vli_Dzg8sEoKq</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Chen, Xiao</creator><creator>Pei, Tao</creator><creator>Song, Ci</creator><creator>Shu, Hua</creator><creator>Guo, Sihui</creator><creator>Wang, Xi</creator><creator>Liu, Yaxi</creator><creator>Chen, Jie</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5278-858X</orcidid><orcidid>https://orcid.org/0000-0002-5311-8761</orcidid><orcidid>https://orcid.org/0000-0003-4583-3711</orcidid></search><sort><creationdate>202408</creationdate><title>Coupling human mobility and social relationships to predict individual socioeconomic status: A graph neural network approach</title><author>Chen, Xiao ; Pei, Tao ; Song, Ci ; Shu, Hua ; Guo, Sihui ; Wang, Xi ; Liu, Yaxi ; Chen, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1909-e6a46fe0b65fb2d3204eb1a26fff6eb9e012efa544ccfaa210b5fef0c1ffa77f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cell phones</topic><topic>Cellular telephones</topic><topic>Coupling</topic><topic>Data acquisition</topic><topic>Economic policy</topic><topic>Economics</topic><topic>Feature extraction</topic><topic>Geography</topic><topic>Graph neural networks</topic><topic>Information processing</topic><topic>Mobility</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Social networks</topic><topic>Social organization</topic><topic>Socioeconomic factors</topic><topic>Socioeconomic status</topic><topic>Socioeconomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Pei, Tao</creatorcontrib><creatorcontrib>Song, Ci</creatorcontrib><creatorcontrib>Shu, Hua</creatorcontrib><creatorcontrib>Guo, Sihui</creatorcontrib><creatorcontrib>Wang, Xi</creatorcontrib><creatorcontrib>Liu, Yaxi</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Transactions in GIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xiao</au><au>Pei, Tao</au><au>Song, Ci</au><au>Shu, Hua</au><au>Guo, Sihui</au><au>Wang, Xi</au><au>Liu, Yaxi</au><au>Chen, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling human mobility and social relationships to predict individual socioeconomic status: A graph neural network approach</atitle><jtitle>Transactions in GIS</jtitle><date>2024-08</date><risdate>2024</risdate><volume>28</volume><issue>5</issue><spage>1412</spage><epage>1438</epage><pages>1412-1438</pages><issn>1361-1682</issn><eissn>1467-9671</eissn><abstract>Understanding individual's socioeconomic status (SES) can provide supporting information for designing political and economic policies. Acquiring large‐scale economic survey data is time‐consuming and laborious. The widespread mobile phone data, which can reflect human mobility and social network characteristics, has become a low‐cost data source for researchers to infer SES. However, previous studies often oversimplify human mobility features and social network features extracted from mobile phone data into general statistical features, resulting in discounting some important temporal and relational information. Therefore, we propose a comprehensive framework for individual SES prediction that effectively utilizes a combination of human mobility and social relationships. In this framework, Word2Vec module extracts human mobility features from mobile phone positioning data, and graph neural network (GNN) module GraphSAGE captures social network characteristics constructed from call detail records. We evaluated the effectiveness of our proposed approach by training the model with real‐world data in Beijing. According to the experimental results, our proposed hybrid approach outperformed the other methods evidently, demonstrating that human mobility and social links are complementary in the characterization of SES. Coupling human mobility and social links can further deepen our understanding of cities' economic geography.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/tgis.13189</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-5278-858X</orcidid><orcidid>https://orcid.org/0000-0002-5311-8761</orcidid><orcidid>https://orcid.org/0000-0003-4583-3711</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-1682 |
ispartof | Transactions in GIS, 2024-08, Vol.28 (5), p.1412-1438 |
issn | 1361-1682 1467-9671 |
language | eng |
recordid | cdi_proquest_journals_3095003556 |
source | Wiley |
subjects | Cell phones Cellular telephones Coupling Data acquisition Economic policy Economics Feature extraction Geography Graph neural networks Information processing Mobility Modules Neural networks Social networks Social organization Socioeconomic factors Socioeconomic status Socioeconomics |
title | Coupling human mobility and social relationships to predict individual socioeconomic status: A graph neural network approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20human%20mobility%20and%20social%20relationships%20to%20predict%20individual%20socioeconomic%20status:%20A%C2%A0graph%20neural%20network%20approach&rft.jtitle=Transactions%20in%20GIS&rft.au=Chen,%20Xiao&rft.date=2024-08&rft.volume=28&rft.issue=5&rft.spage=1412&rft.epage=1438&rft.pages=1412-1438&rft.issn=1361-1682&rft.eissn=1467-9671&rft_id=info:doi/10.1111/tgis.13189&rft_dat=%3Cproquest_cross%3E3095003556%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1909-e6a46fe0b65fb2d3204eb1a26fff6eb9e012efa544ccfaa210b5fef0c1ffa77f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3095003556&rft_id=info:pmid/&rfr_iscdi=true |