Loading…

Coupling human mobility and social relationships to predict individual socioeconomic status: A graph neural network approach

Understanding individual's socioeconomic status (SES) can provide supporting information for designing political and economic policies. Acquiring large‐scale economic survey data is time‐consuming and laborious. The widespread mobile phone data, which can reflect human mobility and social netwo...

Full description

Saved in:
Bibliographic Details
Published in:Transactions in GIS 2024-08, Vol.28 (5), p.1412-1438
Main Authors: Chen, Xiao, Pei, Tao, Song, Ci, Shu, Hua, Guo, Sihui, Wang, Xi, Liu, Yaxi, Chen, Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1909-e6a46fe0b65fb2d3204eb1a26fff6eb9e012efa544ccfaa210b5fef0c1ffa77f3
container_end_page 1438
container_issue 5
container_start_page 1412
container_title Transactions in GIS
container_volume 28
creator Chen, Xiao
Pei, Tao
Song, Ci
Shu, Hua
Guo, Sihui
Wang, Xi
Liu, Yaxi
Chen, Jie
description Understanding individual's socioeconomic status (SES) can provide supporting information for designing political and economic policies. Acquiring large‐scale economic survey data is time‐consuming and laborious. The widespread mobile phone data, which can reflect human mobility and social network characteristics, has become a low‐cost data source for researchers to infer SES. However, previous studies often oversimplify human mobility features and social network features extracted from mobile phone data into general statistical features, resulting in discounting some important temporal and relational information. Therefore, we propose a comprehensive framework for individual SES prediction that effectively utilizes a combination of human mobility and social relationships. In this framework, Word2Vec module extracts human mobility features from mobile phone positioning data, and graph neural network (GNN) module GraphSAGE captures social network characteristics constructed from call detail records. We evaluated the effectiveness of our proposed approach by training the model with real‐world data in Beijing. According to the experimental results, our proposed hybrid approach outperformed the other methods evidently, demonstrating that human mobility and social links are complementary in the characterization of SES. Coupling human mobility and social links can further deepen our understanding of cities' economic geography.
doi_str_mv 10.1111/tgis.13189
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3095003556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095003556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1909-e6a46fe0b65fb2d3204eb1a26fff6eb9e012efa544ccfaa210b5fef0c1ffa77f3</originalsourceid><addsrcrecordid>eNp90L1OwzAQB3ALgUQpLDyBJTakFDsfTsNWVVAqVWKgzJbjnBuX1A62Q9WBd-FZeDJSwswtd8Pv7qQ_QteUTGhfd2Gj_YQmdFqcoBFNWR4VLKen_ZwwGlE2jc_RhfdbQkiaFvkIfc5t1zbabHDd7YTBO1vqRocDFqbC3kotGuygEUFb42vdehwsbh1UWgasTaU_dNX15kgtSGvsTkvsgwidv8ez76-NE22NDXSuVwbC3ro3LNrWWSHrS3SmROPh6q-P0evjw3r-FK2eF8v5bBVJWpAiAiZSpoCULFNlXCUxSaGkImZKKQZlAYTGoESWplIqIWJKykyBIpIqJfJcJWN0M9zt37534APf2s6Z_iVPSJERkmQZ69XtoKSz3jtQvHV6J9yBU8KP8fJjvPw33h7TAe91A4d_JF8vli_Dzg8sEoKq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095003556</pqid></control><display><type>article</type><title>Coupling human mobility and social relationships to predict individual socioeconomic status: A graph neural network approach</title><source>Wiley</source><creator>Chen, Xiao ; Pei, Tao ; Song, Ci ; Shu, Hua ; Guo, Sihui ; Wang, Xi ; Liu, Yaxi ; Chen, Jie</creator><creatorcontrib>Chen, Xiao ; Pei, Tao ; Song, Ci ; Shu, Hua ; Guo, Sihui ; Wang, Xi ; Liu, Yaxi ; Chen, Jie</creatorcontrib><description>Understanding individual's socioeconomic status (SES) can provide supporting information for designing political and economic policies. Acquiring large‐scale economic survey data is time‐consuming and laborious. The widespread mobile phone data, which can reflect human mobility and social network characteristics, has become a low‐cost data source for researchers to infer SES. However, previous studies often oversimplify human mobility features and social network features extracted from mobile phone data into general statistical features, resulting in discounting some important temporal and relational information. Therefore, we propose a comprehensive framework for individual SES prediction that effectively utilizes a combination of human mobility and social relationships. In this framework, Word2Vec module extracts human mobility features from mobile phone positioning data, and graph neural network (GNN) module GraphSAGE captures social network characteristics constructed from call detail records. We evaluated the effectiveness of our proposed approach by training the model with real‐world data in Beijing. According to the experimental results, our proposed hybrid approach outperformed the other methods evidently, demonstrating that human mobility and social links are complementary in the characterization of SES. Coupling human mobility and social links can further deepen our understanding of cities' economic geography.</description><identifier>ISSN: 1361-1682</identifier><identifier>EISSN: 1467-9671</identifier><identifier>DOI: 10.1111/tgis.13189</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Cell phones ; Cellular telephones ; Coupling ; Data acquisition ; Economic policy ; Economics ; Feature extraction ; Geography ; Graph neural networks ; Information processing ; Mobility ; Modules ; Neural networks ; Social networks ; Social organization ; Socioeconomic factors ; Socioeconomic status ; Socioeconomics</subject><ispartof>Transactions in GIS, 2024-08, Vol.28 (5), p.1412-1438</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2024 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1909-e6a46fe0b65fb2d3204eb1a26fff6eb9e012efa544ccfaa210b5fef0c1ffa77f3</cites><orcidid>0000-0001-5278-858X ; 0000-0002-5311-8761 ; 0000-0003-4583-3711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Pei, Tao</creatorcontrib><creatorcontrib>Song, Ci</creatorcontrib><creatorcontrib>Shu, Hua</creatorcontrib><creatorcontrib>Guo, Sihui</creatorcontrib><creatorcontrib>Wang, Xi</creatorcontrib><creatorcontrib>Liu, Yaxi</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><title>Coupling human mobility and social relationships to predict individual socioeconomic status: A graph neural network approach</title><title>Transactions in GIS</title><description>Understanding individual's socioeconomic status (SES) can provide supporting information for designing political and economic policies. Acquiring large‐scale economic survey data is time‐consuming and laborious. The widespread mobile phone data, which can reflect human mobility and social network characteristics, has become a low‐cost data source for researchers to infer SES. However, previous studies often oversimplify human mobility features and social network features extracted from mobile phone data into general statistical features, resulting in discounting some important temporal and relational information. Therefore, we propose a comprehensive framework for individual SES prediction that effectively utilizes a combination of human mobility and social relationships. In this framework, Word2Vec module extracts human mobility features from mobile phone positioning data, and graph neural network (GNN) module GraphSAGE captures social network characteristics constructed from call detail records. We evaluated the effectiveness of our proposed approach by training the model with real‐world data in Beijing. According to the experimental results, our proposed hybrid approach outperformed the other methods evidently, demonstrating that human mobility and social links are complementary in the characterization of SES. Coupling human mobility and social links can further deepen our understanding of cities' economic geography.</description><subject>Cell phones</subject><subject>Cellular telephones</subject><subject>Coupling</subject><subject>Data acquisition</subject><subject>Economic policy</subject><subject>Economics</subject><subject>Feature extraction</subject><subject>Geography</subject><subject>Graph neural networks</subject><subject>Information processing</subject><subject>Mobility</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Social networks</subject><subject>Social organization</subject><subject>Socioeconomic factors</subject><subject>Socioeconomic status</subject><subject>Socioeconomics</subject><issn>1361-1682</issn><issn>1467-9671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90L1OwzAQB3ALgUQpLDyBJTakFDsfTsNWVVAqVWKgzJbjnBuX1A62Q9WBd-FZeDJSwswtd8Pv7qQ_QteUTGhfd2Gj_YQmdFqcoBFNWR4VLKen_ZwwGlE2jc_RhfdbQkiaFvkIfc5t1zbabHDd7YTBO1vqRocDFqbC3kotGuygEUFb42vdehwsbh1UWgasTaU_dNX15kgtSGvsTkvsgwidv8ez76-NE22NDXSuVwbC3ro3LNrWWSHrS3SmROPh6q-P0evjw3r-FK2eF8v5bBVJWpAiAiZSpoCULFNlXCUxSaGkImZKKQZlAYTGoESWplIqIWJKykyBIpIqJfJcJWN0M9zt37534APf2s6Z_iVPSJERkmQZ69XtoKSz3jtQvHV6J9yBU8KP8fJjvPw33h7TAe91A4d_JF8vli_Dzg8sEoKq</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Chen, Xiao</creator><creator>Pei, Tao</creator><creator>Song, Ci</creator><creator>Shu, Hua</creator><creator>Guo, Sihui</creator><creator>Wang, Xi</creator><creator>Liu, Yaxi</creator><creator>Chen, Jie</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5278-858X</orcidid><orcidid>https://orcid.org/0000-0002-5311-8761</orcidid><orcidid>https://orcid.org/0000-0003-4583-3711</orcidid></search><sort><creationdate>202408</creationdate><title>Coupling human mobility and social relationships to predict individual socioeconomic status: A graph neural network approach</title><author>Chen, Xiao ; Pei, Tao ; Song, Ci ; Shu, Hua ; Guo, Sihui ; Wang, Xi ; Liu, Yaxi ; Chen, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1909-e6a46fe0b65fb2d3204eb1a26fff6eb9e012efa544ccfaa210b5fef0c1ffa77f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cell phones</topic><topic>Cellular telephones</topic><topic>Coupling</topic><topic>Data acquisition</topic><topic>Economic policy</topic><topic>Economics</topic><topic>Feature extraction</topic><topic>Geography</topic><topic>Graph neural networks</topic><topic>Information processing</topic><topic>Mobility</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Social networks</topic><topic>Social organization</topic><topic>Socioeconomic factors</topic><topic>Socioeconomic status</topic><topic>Socioeconomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Pei, Tao</creatorcontrib><creatorcontrib>Song, Ci</creatorcontrib><creatorcontrib>Shu, Hua</creatorcontrib><creatorcontrib>Guo, Sihui</creatorcontrib><creatorcontrib>Wang, Xi</creatorcontrib><creatorcontrib>Liu, Yaxi</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Transactions in GIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xiao</au><au>Pei, Tao</au><au>Song, Ci</au><au>Shu, Hua</au><au>Guo, Sihui</au><au>Wang, Xi</au><au>Liu, Yaxi</au><au>Chen, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling human mobility and social relationships to predict individual socioeconomic status: A graph neural network approach</atitle><jtitle>Transactions in GIS</jtitle><date>2024-08</date><risdate>2024</risdate><volume>28</volume><issue>5</issue><spage>1412</spage><epage>1438</epage><pages>1412-1438</pages><issn>1361-1682</issn><eissn>1467-9671</eissn><abstract>Understanding individual's socioeconomic status (SES) can provide supporting information for designing political and economic policies. Acquiring large‐scale economic survey data is time‐consuming and laborious. The widespread mobile phone data, which can reflect human mobility and social network characteristics, has become a low‐cost data source for researchers to infer SES. However, previous studies often oversimplify human mobility features and social network features extracted from mobile phone data into general statistical features, resulting in discounting some important temporal and relational information. Therefore, we propose a comprehensive framework for individual SES prediction that effectively utilizes a combination of human mobility and social relationships. In this framework, Word2Vec module extracts human mobility features from mobile phone positioning data, and graph neural network (GNN) module GraphSAGE captures social network characteristics constructed from call detail records. We evaluated the effectiveness of our proposed approach by training the model with real‐world data in Beijing. According to the experimental results, our proposed hybrid approach outperformed the other methods evidently, demonstrating that human mobility and social links are complementary in the characterization of SES. Coupling human mobility and social links can further deepen our understanding of cities' economic geography.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/tgis.13189</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-5278-858X</orcidid><orcidid>https://orcid.org/0000-0002-5311-8761</orcidid><orcidid>https://orcid.org/0000-0003-4583-3711</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1361-1682
ispartof Transactions in GIS, 2024-08, Vol.28 (5), p.1412-1438
issn 1361-1682
1467-9671
language eng
recordid cdi_proquest_journals_3095003556
source Wiley
subjects Cell phones
Cellular telephones
Coupling
Data acquisition
Economic policy
Economics
Feature extraction
Geography
Graph neural networks
Information processing
Mobility
Modules
Neural networks
Social networks
Social organization
Socioeconomic factors
Socioeconomic status
Socioeconomics
title Coupling human mobility and social relationships to predict individual socioeconomic status: A graph neural network approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20human%20mobility%20and%20social%20relationships%20to%20predict%20individual%20socioeconomic%20status:%20A%C2%A0graph%20neural%20network%20approach&rft.jtitle=Transactions%20in%20GIS&rft.au=Chen,%20Xiao&rft.date=2024-08&rft.volume=28&rft.issue=5&rft.spage=1412&rft.epage=1438&rft.pages=1412-1438&rft.issn=1361-1682&rft.eissn=1467-9671&rft_id=info:doi/10.1111/tgis.13189&rft_dat=%3Cproquest_cross%3E3095003556%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1909-e6a46fe0b65fb2d3204eb1a26fff6eb9e012efa544ccfaa210b5fef0c1ffa77f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3095003556&rft_id=info:pmid/&rfr_iscdi=true