Loading…

Thermal behavior of flexible and breathable sandwich fibrous polyethylene glycol (PEG) encapsulations

Textiles incorporating phase change material have attracted increasing attention due to their temperature regulating function. Although a great progress has been made in the development of phase change material textiles, it has been found that the loading amount of phase change materials is limited...

Full description

Saved in:
Bibliographic Details
Published in:Textile research journal 2024-08, Vol.94 (15-16), p.1703-1723
Main Authors: Yang, Kai, Zhang, Xiuling, Venkataraman, Mohanapriya, Chen, Kun, Wang, Yuanfeng, Wiener, Jakub, Zhu, Guocheng, Yao, Juming, Militky, Jiri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c307t-6adbaf39f4a013b8ecf36245b730d46531b392eb910a7352633312b86b1c8ddc3
container_end_page 1723
container_issue 15-16
container_start_page 1703
container_title Textile research journal
container_volume 94
creator Yang, Kai
Zhang, Xiuling
Venkataraman, Mohanapriya
Chen, Kun
Wang, Yuanfeng
Wiener, Jakub
Zhu, Guocheng
Yao, Juming
Militky, Jiri
description Textiles incorporating phase change material have attracted increasing attention due to their temperature regulating function. Although a great progress has been made in the development of phase change material textiles, it has been found that the loading amount of phase change materials is limited by other final properties. Recently, we have proposed a sandwich fibrous phase change material encapsulation with a relatively high phase change material loading amount, which is a multi-layer fabric structure containing phase change material. However, the breathability of sandwich fibrous phase change material encapsulation should be improved because there is no path for air to penetrate through. In this work, the sandwich fibrous phase change material encapsulation structure with polyethylene glycol as phase change material is modified by introducing different air pockets in the thermal function layer ranging from 19% to 64%. The leakage phenomenon, phase transition behavior, thermal energy storage, breathability, T-history and practicality of the breathable sandwich fibrous phase change material encapsulations are investigated. As a result, the maximum polyethylene glycol loading amount of the phase change materials pocket is 83 wt%, and there is no leakage of polyethylene glycol during working time. The overall enthalpy value of the breathable sandwich fibrous phase change material encapsulation ranges from 27 J/g to 48 J/g. The optimal air permeability and water vapor resistance of the breathable sandwich fibrous phase change material encapsulation is 9 mm/s under 100 Pa and 34.5 m2 Pa W−1. Furthermore, the heterogeneous heat transfer through the breathable sandwich fibrous phase change material encapsulation is found due to the complicated thermal resistances of the hybrid thermal functional layer. In addition, for breathable sandwich fibrous phase change material encapsulation, the flexibility, hydrophobicity, self-cleaning property, abrasion resistance, and stability after water immersion are found. We believe the research has a great potential in various applications related to phase change material.
doi_str_mv 10.1177/00405175241236494
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3095232273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_00405175241236494</sage_id><sourcerecordid>3095232273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-6adbaf39f4a013b8ecf36245b730d46531b392eb910a7352633312b86b1c8ddc3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AUxBdRsFY_gLcFL3pI3X_JJkcptQoFPdRz2N28NCnbbNxN1Hx7Eyp4EE-P4f1mBgaha0oWlEp5T4ggMZUxE5TxRGTiBM2oFEkkpUhP0Wz6RxNwji5C2BNC0lSmMwTbCvxBWayhUh-189iVuLTwVWsLWDUF1h5UV6lJhlF_1qbCZa296wNunR2gqwYLDeCdHYyz-PZ1tb7D0BjVht6qrnZNuERnpbIBrn7uHL09rrbLp2jzsn5ePmwiw4nsokQVWpU8K4UilOsUTMkTJmItOSlEEnOqecZAZ5QoyWOWcM4p02miqUmLwvA5ujnmtt699xC6fO9634yVOSdZzDhjko8UPVLGuxA8lHnr64PyQ05JPq2Z_1lz9CyOnqB28Jv6v-Eb9ad0qQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095232273</pqid></control><display><type>article</type><title>Thermal behavior of flexible and breathable sandwich fibrous polyethylene glycol (PEG) encapsulations</title><source>Sage Journals Online</source><creator>Yang, Kai ; Zhang, Xiuling ; Venkataraman, Mohanapriya ; Chen, Kun ; Wang, Yuanfeng ; Wiener, Jakub ; Zhu, Guocheng ; Yao, Juming ; Militky, Jiri</creator><creatorcontrib>Yang, Kai ; Zhang, Xiuling ; Venkataraman, Mohanapriya ; Chen, Kun ; Wang, Yuanfeng ; Wiener, Jakub ; Zhu, Guocheng ; Yao, Juming ; Militky, Jiri</creatorcontrib><description>Textiles incorporating phase change material have attracted increasing attention due to their temperature regulating function. Although a great progress has been made in the development of phase change material textiles, it has been found that the loading amount of phase change materials is limited by other final properties. Recently, we have proposed a sandwich fibrous phase change material encapsulation with a relatively high phase change material loading amount, which is a multi-layer fabric structure containing phase change material. However, the breathability of sandwich fibrous phase change material encapsulation should be improved because there is no path for air to penetrate through. In this work, the sandwich fibrous phase change material encapsulation structure with polyethylene glycol as phase change material is modified by introducing different air pockets in the thermal function layer ranging from 19% to 64%. The leakage phenomenon, phase transition behavior, thermal energy storage, breathability, T-history and practicality of the breathable sandwich fibrous phase change material encapsulations are investigated. As a result, the maximum polyethylene glycol loading amount of the phase change materials pocket is 83 wt%, and there is no leakage of polyethylene glycol during working time. The overall enthalpy value of the breathable sandwich fibrous phase change material encapsulation ranges from 27 J/g to 48 J/g. The optimal air permeability and water vapor resistance of the breathable sandwich fibrous phase change material encapsulation is 9 mm/s under 100 Pa and 34.5 m2 Pa W−1. Furthermore, the heterogeneous heat transfer through the breathable sandwich fibrous phase change material encapsulation is found due to the complicated thermal resistances of the hybrid thermal functional layer. In addition, for breathable sandwich fibrous phase change material encapsulation, the flexibility, hydrophobicity, self-cleaning property, abrasion resistance, and stability after water immersion are found. We believe the research has a great potential in various applications related to phase change material.</description><identifier>ISSN: 0040-5175</identifier><identifier>EISSN: 1746-7748</identifier><identifier>DOI: 10.1177/00405175241236494</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Abrasion resistance ; Air pockets ; Air temperature ; Encapsulation ; Energy storage ; Enthalpy ; Fabric structures ; Heat transfer ; Hydrophobicity ; Leakage ; Multilayers ; Phase change materials ; Phase transitions ; Polyethylene glycol ; Structure-function relationships ; Textiles ; Thermal energy ; Thermodynamic properties ; Vapor resistance ; Water immersion ; Water vapor</subject><ispartof>Textile research journal, 2024-08, Vol.94 (15-16), p.1703-1723</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-6adbaf39f4a013b8ecf36245b730d46531b392eb910a7352633312b86b1c8ddc3</cites><orcidid>0000-0002-8977-1244 ; 0000-0002-0846-6943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids></links><search><creatorcontrib>Yang, Kai</creatorcontrib><creatorcontrib>Zhang, Xiuling</creatorcontrib><creatorcontrib>Venkataraman, Mohanapriya</creatorcontrib><creatorcontrib>Chen, Kun</creatorcontrib><creatorcontrib>Wang, Yuanfeng</creatorcontrib><creatorcontrib>Wiener, Jakub</creatorcontrib><creatorcontrib>Zhu, Guocheng</creatorcontrib><creatorcontrib>Yao, Juming</creatorcontrib><creatorcontrib>Militky, Jiri</creatorcontrib><title>Thermal behavior of flexible and breathable sandwich fibrous polyethylene glycol (PEG) encapsulations</title><title>Textile research journal</title><description>Textiles incorporating phase change material have attracted increasing attention due to their temperature regulating function. Although a great progress has been made in the development of phase change material textiles, it has been found that the loading amount of phase change materials is limited by other final properties. Recently, we have proposed a sandwich fibrous phase change material encapsulation with a relatively high phase change material loading amount, which is a multi-layer fabric structure containing phase change material. However, the breathability of sandwich fibrous phase change material encapsulation should be improved because there is no path for air to penetrate through. In this work, the sandwich fibrous phase change material encapsulation structure with polyethylene glycol as phase change material is modified by introducing different air pockets in the thermal function layer ranging from 19% to 64%. The leakage phenomenon, phase transition behavior, thermal energy storage, breathability, T-history and practicality of the breathable sandwich fibrous phase change material encapsulations are investigated. As a result, the maximum polyethylene glycol loading amount of the phase change materials pocket is 83 wt%, and there is no leakage of polyethylene glycol during working time. The overall enthalpy value of the breathable sandwich fibrous phase change material encapsulation ranges from 27 J/g to 48 J/g. The optimal air permeability and water vapor resistance of the breathable sandwich fibrous phase change material encapsulation is 9 mm/s under 100 Pa and 34.5 m2 Pa W−1. Furthermore, the heterogeneous heat transfer through the breathable sandwich fibrous phase change material encapsulation is found due to the complicated thermal resistances of the hybrid thermal functional layer. In addition, for breathable sandwich fibrous phase change material encapsulation, the flexibility, hydrophobicity, self-cleaning property, abrasion resistance, and stability after water immersion are found. We believe the research has a great potential in various applications related to phase change material.</description><subject>Abrasion resistance</subject><subject>Air pockets</subject><subject>Air temperature</subject><subject>Encapsulation</subject><subject>Energy storage</subject><subject>Enthalpy</subject><subject>Fabric structures</subject><subject>Heat transfer</subject><subject>Hydrophobicity</subject><subject>Leakage</subject><subject>Multilayers</subject><subject>Phase change materials</subject><subject>Phase transitions</subject><subject>Polyethylene glycol</subject><subject>Structure-function relationships</subject><subject>Textiles</subject><subject>Thermal energy</subject><subject>Thermodynamic properties</subject><subject>Vapor resistance</subject><subject>Water immersion</subject><subject>Water vapor</subject><issn>0040-5175</issn><issn>1746-7748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp1kE9Lw0AUxBdRsFY_gLcFL3pI3X_JJkcptQoFPdRz2N28NCnbbNxN1Hx7Eyp4EE-P4f1mBgaha0oWlEp5T4ggMZUxE5TxRGTiBM2oFEkkpUhP0Wz6RxNwji5C2BNC0lSmMwTbCvxBWayhUh-189iVuLTwVWsLWDUF1h5UV6lJhlF_1qbCZa296wNunR2gqwYLDeCdHYyz-PZ1tb7D0BjVht6qrnZNuERnpbIBrn7uHL09rrbLp2jzsn5ePmwiw4nsokQVWpU8K4UilOsUTMkTJmItOSlEEnOqecZAZ5QoyWOWcM4p02miqUmLwvA5ujnmtt699xC6fO9634yVOSdZzDhjko8UPVLGuxA8lHnr64PyQ05JPq2Z_1lz9CyOnqB28Jv6v-Eb9ad0qQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Yang, Kai</creator><creator>Zhang, Xiuling</creator><creator>Venkataraman, Mohanapriya</creator><creator>Chen, Kun</creator><creator>Wang, Yuanfeng</creator><creator>Wiener, Jakub</creator><creator>Zhu, Guocheng</creator><creator>Yao, Juming</creator><creator>Militky, Jiri</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8977-1244</orcidid><orcidid>https://orcid.org/0000-0002-0846-6943</orcidid></search><sort><creationdate>20240801</creationdate><title>Thermal behavior of flexible and breathable sandwich fibrous polyethylene glycol (PEG) encapsulations</title><author>Yang, Kai ; Zhang, Xiuling ; Venkataraman, Mohanapriya ; Chen, Kun ; Wang, Yuanfeng ; Wiener, Jakub ; Zhu, Guocheng ; Yao, Juming ; Militky, Jiri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-6adbaf39f4a013b8ecf36245b730d46531b392eb910a7352633312b86b1c8ddc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abrasion resistance</topic><topic>Air pockets</topic><topic>Air temperature</topic><topic>Encapsulation</topic><topic>Energy storage</topic><topic>Enthalpy</topic><topic>Fabric structures</topic><topic>Heat transfer</topic><topic>Hydrophobicity</topic><topic>Leakage</topic><topic>Multilayers</topic><topic>Phase change materials</topic><topic>Phase transitions</topic><topic>Polyethylene glycol</topic><topic>Structure-function relationships</topic><topic>Textiles</topic><topic>Thermal energy</topic><topic>Thermodynamic properties</topic><topic>Vapor resistance</topic><topic>Water immersion</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Kai</creatorcontrib><creatorcontrib>Zhang, Xiuling</creatorcontrib><creatorcontrib>Venkataraman, Mohanapriya</creatorcontrib><creatorcontrib>Chen, Kun</creatorcontrib><creatorcontrib>Wang, Yuanfeng</creatorcontrib><creatorcontrib>Wiener, Jakub</creatorcontrib><creatorcontrib>Zhu, Guocheng</creatorcontrib><creatorcontrib>Yao, Juming</creatorcontrib><creatorcontrib>Militky, Jiri</creatorcontrib><collection>SAGE Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Textile research journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Kai</au><au>Zhang, Xiuling</au><au>Venkataraman, Mohanapriya</au><au>Chen, Kun</au><au>Wang, Yuanfeng</au><au>Wiener, Jakub</au><au>Zhu, Guocheng</au><au>Yao, Juming</au><au>Militky, Jiri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal behavior of flexible and breathable sandwich fibrous polyethylene glycol (PEG) encapsulations</atitle><jtitle>Textile research journal</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>94</volume><issue>15-16</issue><spage>1703</spage><epage>1723</epage><pages>1703-1723</pages><issn>0040-5175</issn><eissn>1746-7748</eissn><abstract>Textiles incorporating phase change material have attracted increasing attention due to their temperature regulating function. Although a great progress has been made in the development of phase change material textiles, it has been found that the loading amount of phase change materials is limited by other final properties. Recently, we have proposed a sandwich fibrous phase change material encapsulation with a relatively high phase change material loading amount, which is a multi-layer fabric structure containing phase change material. However, the breathability of sandwich fibrous phase change material encapsulation should be improved because there is no path for air to penetrate through. In this work, the sandwich fibrous phase change material encapsulation structure with polyethylene glycol as phase change material is modified by introducing different air pockets in the thermal function layer ranging from 19% to 64%. The leakage phenomenon, phase transition behavior, thermal energy storage, breathability, T-history and practicality of the breathable sandwich fibrous phase change material encapsulations are investigated. As a result, the maximum polyethylene glycol loading amount of the phase change materials pocket is 83 wt%, and there is no leakage of polyethylene glycol during working time. The overall enthalpy value of the breathable sandwich fibrous phase change material encapsulation ranges from 27 J/g to 48 J/g. The optimal air permeability and water vapor resistance of the breathable sandwich fibrous phase change material encapsulation is 9 mm/s under 100 Pa and 34.5 m2 Pa W−1. Furthermore, the heterogeneous heat transfer through the breathable sandwich fibrous phase change material encapsulation is found due to the complicated thermal resistances of the hybrid thermal functional layer. In addition, for breathable sandwich fibrous phase change material encapsulation, the flexibility, hydrophobicity, self-cleaning property, abrasion resistance, and stability after water immersion are found. We believe the research has a great potential in various applications related to phase change material.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/00405175241236494</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8977-1244</orcidid><orcidid>https://orcid.org/0000-0002-0846-6943</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0040-5175
ispartof Textile research journal, 2024-08, Vol.94 (15-16), p.1703-1723
issn 0040-5175
1746-7748
language eng
recordid cdi_proquest_journals_3095232273
source Sage Journals Online
subjects Abrasion resistance
Air pockets
Air temperature
Encapsulation
Energy storage
Enthalpy
Fabric structures
Heat transfer
Hydrophobicity
Leakage
Multilayers
Phase change materials
Phase transitions
Polyethylene glycol
Structure-function relationships
Textiles
Thermal energy
Thermodynamic properties
Vapor resistance
Water immersion
Water vapor
title Thermal behavior of flexible and breathable sandwich fibrous polyethylene glycol (PEG) encapsulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20behavior%20of%20flexible%20and%20breathable%20sandwich%20fibrous%20polyethylene%20glycol%20(PEG)%20encapsulations&rft.jtitle=Textile%20research%20journal&rft.au=Yang,%20Kai&rft.date=2024-08-01&rft.volume=94&rft.issue=15-16&rft.spage=1703&rft.epage=1723&rft.pages=1703-1723&rft.issn=0040-5175&rft.eissn=1746-7748&rft_id=info:doi/10.1177/00405175241236494&rft_dat=%3Cproquest_cross%3E3095232273%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-6adbaf39f4a013b8ecf36245b730d46531b392eb910a7352633312b86b1c8ddc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3095232273&rft_id=info:pmid/&rft_sage_id=10.1177_00405175241236494&rfr_iscdi=true