Loading…
Investigation properties of hybrid aluminum metal matrix composites (HAMMC’s) – A brief review
The most typically used material is aluminum metal matrix composites due to their low density, enhanced strength, resistance to corrosion, light weight, and thermal conductivity. A unique class of metal matrix composites termed aluminum hybrid composites may be able to meet the needs of increasingly...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The most typically used material is aluminum metal matrix composites due to their low density, enhanced strength, resistance to corrosion, light weight, and thermal conductivity. A unique class of metal matrix composites termed aluminum hybrid composites may be able to meet the needs of increasingly sophisticated technical applications. The improved mechanical properties, ease of integration with conventional processing techniques, and potential for reduced production costs of hybrid aluminum composites meet these needs. The performance of these materials mostly depends on selecting the right combination of reinforcing material because numerous manufacturing parameters are linked to the reinforcing particles. This study will evaluate the many combinations of reinforcing materials used in the manufacturing of hybrid aluminum matrix composites in order to gain a better understanding of how those combinations affect the mechanical, corrosion, and wear properties of the materials. A synopsis of the primary techniques for producing these materials is given, along with suggestions for future lines of inquiry to improve aluminum hybrid composites. To examine how reinforcements affected the composite samples’ dry sliding wear behavior, microstructure, and mechanical features. SEM was used to analyze the microstructural properties and worn surfaces of the composite samples. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/5.0229696 |