Loading…
Threshold mass of the general relativistic instability for supermassive star cores
The dependence of the final fate of supermassive star (SMS) cores on their mass and angular momentum is studied with simple modeling. SMS cores in the hydrogen burning phase encounter the general relativistic instability during the stellar evolution if the mass is larger than \(\sim 3 \times 10^4M_\...
Saved in:
Published in: | arXiv.org 2024-08 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Shibata, Masaru Fujibayashi, Sho Jockel, Cédric Kawaguchi, Kyohei |
description | The dependence of the final fate of supermassive star (SMS) cores on their mass and angular momentum is studied with simple modeling. SMS cores in the hydrogen burning phase encounter the general relativistic instability during the stellar evolution if the mass is larger than \(\sim 3 \times 10^4M_\odot\). Spherical SMS cores in the helium burning phase encounter the general relativistic instability prior to the onset of the electron-positron pair instability if the mass is larger than \(\sim 1\times 10^4M_\odot\). For rapidly rotating SMS cores, these values for the threshold mass are enhanced by up to a factor of \(\sim 5\), and thus, for SMSs with mass smaller than \(\sim 10^4M_\odot\) the collapse is triggered by the pair-instability, irrespective of the rotation. After the onset of the general relativistic instability, SMS cores in the hydrogen burning phase with reasonable metallicity are likely to collapse to a black hole irrespective of the degree of rotation, whereas the SMS cores in the helium burning phase could explode via nuclear burning with no black hole formation, as previous works demonstrate. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3095818913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095818913</sourcerecordid><originalsourceid>FETCH-proquest_journals_30958189133</originalsourceid><addsrcrecordid>eNqNjMEKgkAURYcgSMp_eNBaGGeydB1F63Avkz1zZHLsvVHo7zPoA1qdxTn3LkSktE6TfKfUSsTMnZRS7Q8qy3QkrmVLyK13d3gaZvANhBbhgT2ScUDoTLCT5WBrsD0Hc7POhjc0noDHAem7shPCrAhqP59txLIxjjH-cS2251N5vCQD-deIHKrOj9TPqtKyyPI0L1Kt_6s-cAxAzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095818913</pqid></control><display><type>article</type><title>Threshold mass of the general relativistic instability for supermassive star cores</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Shibata, Masaru ; Fujibayashi, Sho ; Jockel, Cédric ; Kawaguchi, Kyohei</creator><creatorcontrib>Shibata, Masaru ; Fujibayashi, Sho ; Jockel, Cédric ; Kawaguchi, Kyohei</creatorcontrib><description>The dependence of the final fate of supermassive star (SMS) cores on their mass and angular momentum is studied with simple modeling. SMS cores in the hydrogen burning phase encounter the general relativistic instability during the stellar evolution if the mass is larger than \(\sim 3 \times 10^4M_\odot\). Spherical SMS cores in the helium burning phase encounter the general relativistic instability prior to the onset of the electron-positron pair instability if the mass is larger than \(\sim 1\times 10^4M_\odot\). For rapidly rotating SMS cores, these values for the threshold mass are enhanced by up to a factor of \(\sim 5\), and thus, for SMSs with mass smaller than \(\sim 10^4M_\odot\) the collapse is triggered by the pair-instability, irrespective of the rotation. After the onset of the general relativistic instability, SMS cores in the hydrogen burning phase with reasonable metallicity are likely to collapse to a black hole irrespective of the degree of rotation, whereas the SMS cores in the helium burning phase could explode via nuclear burning with no black hole formation, as previous works demonstrate.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Angular momentum ; Electron-positron pairs ; Helium ; Hydrogen ; Metallicity ; Relativistic effects ; Rotation ; Stability ; Stellar evolution ; Supermassive stars</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3095818913?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Shibata, Masaru</creatorcontrib><creatorcontrib>Fujibayashi, Sho</creatorcontrib><creatorcontrib>Jockel, Cédric</creatorcontrib><creatorcontrib>Kawaguchi, Kyohei</creatorcontrib><title>Threshold mass of the general relativistic instability for supermassive star cores</title><title>arXiv.org</title><description>The dependence of the final fate of supermassive star (SMS) cores on their mass and angular momentum is studied with simple modeling. SMS cores in the hydrogen burning phase encounter the general relativistic instability during the stellar evolution if the mass is larger than \(\sim 3 \times 10^4M_\odot\). Spherical SMS cores in the helium burning phase encounter the general relativistic instability prior to the onset of the electron-positron pair instability if the mass is larger than \(\sim 1\times 10^4M_\odot\). For rapidly rotating SMS cores, these values for the threshold mass are enhanced by up to a factor of \(\sim 5\), and thus, for SMSs with mass smaller than \(\sim 10^4M_\odot\) the collapse is triggered by the pair-instability, irrespective of the rotation. After the onset of the general relativistic instability, SMS cores in the hydrogen burning phase with reasonable metallicity are likely to collapse to a black hole irrespective of the degree of rotation, whereas the SMS cores in the helium burning phase could explode via nuclear burning with no black hole formation, as previous works demonstrate.</description><subject>Angular momentum</subject><subject>Electron-positron pairs</subject><subject>Helium</subject><subject>Hydrogen</subject><subject>Metallicity</subject><subject>Relativistic effects</subject><subject>Rotation</subject><subject>Stability</subject><subject>Stellar evolution</subject><subject>Supermassive stars</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjMEKgkAURYcgSMp_eNBaGGeydB1F63Avkz1zZHLsvVHo7zPoA1qdxTn3LkSktE6TfKfUSsTMnZRS7Q8qy3QkrmVLyK13d3gaZvANhBbhgT2ScUDoTLCT5WBrsD0Hc7POhjc0noDHAem7shPCrAhqP59txLIxjjH-cS2251N5vCQD-deIHKrOj9TPqtKyyPI0L1Kt_6s-cAxAzQ</recordid><startdate>20240821</startdate><enddate>20240821</enddate><creator>Shibata, Masaru</creator><creator>Fujibayashi, Sho</creator><creator>Jockel, Cédric</creator><creator>Kawaguchi, Kyohei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240821</creationdate><title>Threshold mass of the general relativistic instability for supermassive star cores</title><author>Shibata, Masaru ; Fujibayashi, Sho ; Jockel, Cédric ; Kawaguchi, Kyohei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30958189133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Angular momentum</topic><topic>Electron-positron pairs</topic><topic>Helium</topic><topic>Hydrogen</topic><topic>Metallicity</topic><topic>Relativistic effects</topic><topic>Rotation</topic><topic>Stability</topic><topic>Stellar evolution</topic><topic>Supermassive stars</topic><toplevel>online_resources</toplevel><creatorcontrib>Shibata, Masaru</creatorcontrib><creatorcontrib>Fujibayashi, Sho</creatorcontrib><creatorcontrib>Jockel, Cédric</creatorcontrib><creatorcontrib>Kawaguchi, Kyohei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shibata, Masaru</au><au>Fujibayashi, Sho</au><au>Jockel, Cédric</au><au>Kawaguchi, Kyohei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Threshold mass of the general relativistic instability for supermassive star cores</atitle><jtitle>arXiv.org</jtitle><date>2024-08-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The dependence of the final fate of supermassive star (SMS) cores on their mass and angular momentum is studied with simple modeling. SMS cores in the hydrogen burning phase encounter the general relativistic instability during the stellar evolution if the mass is larger than \(\sim 3 \times 10^4M_\odot\). Spherical SMS cores in the helium burning phase encounter the general relativistic instability prior to the onset of the electron-positron pair instability if the mass is larger than \(\sim 1\times 10^4M_\odot\). For rapidly rotating SMS cores, these values for the threshold mass are enhanced by up to a factor of \(\sim 5\), and thus, for SMSs with mass smaller than \(\sim 10^4M_\odot\) the collapse is triggered by the pair-instability, irrespective of the rotation. After the onset of the general relativistic instability, SMS cores in the hydrogen burning phase with reasonable metallicity are likely to collapse to a black hole irrespective of the degree of rotation, whereas the SMS cores in the helium burning phase could explode via nuclear burning with no black hole formation, as previous works demonstrate.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3095818913 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Angular momentum Electron-positron pairs Helium Hydrogen Metallicity Relativistic effects Rotation Stability Stellar evolution Supermassive stars |
title | Threshold mass of the general relativistic instability for supermassive star cores |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Threshold%20mass%20of%20the%20general%20relativistic%20instability%20for%20supermassive%20star%20cores&rft.jtitle=arXiv.org&rft.au=Shibata,%20Masaru&rft.date=2024-08-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3095818913%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30958189133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3095818913&rft_id=info:pmid/&rfr_iscdi=true |