Loading…
Tuning THz magnons in a mixed van-der-Waals antiferromagnet
Alloying stands out as a pivotal technological method employed across various compounds, be they metallic, magnetic, or semiconducting, serving to fine-tune their properties to meet specific requirements. Ternary semiconductors represent a prominent example of such alloys. They offer fine-tuning of...
Saved in:
Published in: | arXiv.org 2024-11 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | F Le Mardele Mohelsky, I Jana, D Pawbake, A Dzian, J W -L Lee Raju, K Sankar, R Faugeras, C Potemski, M Zhitomirsky, M E Orlita, M |
description | Alloying stands out as a pivotal technological method employed across various compounds, be they metallic, magnetic, or semiconducting, serving to fine-tune their properties to meet specific requirements. Ternary semiconductors represent a prominent example of such alloys. They offer fine-tuning of electronic bands, the band gap in particular, thus granting the technology of semiconductor heterostructures devices, key elements in current electronics and optoelectronics. In the realm of magnetically ordered systems, akin to electronic bands in solids, spin waves exhibit characteristic dispersion relations, featuring sizeable magnon gaps in many antiferromagnets. The engineering of the magnon gap constitutes a relevant direction in current research on antiferromagnets, aiming to leverage their distinct properties for THz technologies, spintronics, or magnonics. In this study, we showcase the tunability of the magnon gap across the THz spectral range within an alloy comprising representative semiconducting van-der-Waals antiferromagnets FePS\(_3\) and NiPS\(_3\). These constituents share identical in-plane crystal structures, magnetic unit cells and the direction of the magnetic anisotropy, but differ in the amplitude and sign of the latter. Altogether these attributes result in the wide tunability of the magnon gap in the Fe\(_{1-x}\)Ni\(_x\)PS\(_3\) alloy in which the magnetic order is imposed by stronger, perpendicular anisotropy of iron. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3096437087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3096437087</sourcerecordid><originalsourceid>FETCH-proquest_journals_30964370873</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDinNy8xLVwjxqFLITUzPy88rVsjMU0hUyM2sSE1RKEvM001JLdINT0zMKVZIzCvJTEstKsoHqUwt4WFgTQMKp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8sYGlmYmxuYGFuTFxqgDFVzbj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096437087</pqid></control><display><type>article</type><title>Tuning THz magnons in a mixed van-der-Waals antiferromagnet</title><source>Publicly Available Content Database</source><creator>F Le Mardele ; Mohelsky, I ; Jana, D ; Pawbake, A ; Dzian, J ; W -L Lee ; Raju, K ; Sankar, R ; Faugeras, C ; Potemski, M ; Zhitomirsky, M E ; Orlita, M</creator><creatorcontrib>F Le Mardele ; Mohelsky, I ; Jana, D ; Pawbake, A ; Dzian, J ; W -L Lee ; Raju, K ; Sankar, R ; Faugeras, C ; Potemski, M ; Zhitomirsky, M E ; Orlita, M</creatorcontrib><description>Alloying stands out as a pivotal technological method employed across various compounds, be they metallic, magnetic, or semiconducting, serving to fine-tune their properties to meet specific requirements. Ternary semiconductors represent a prominent example of such alloys. They offer fine-tuning of electronic bands, the band gap in particular, thus granting the technology of semiconductor heterostructures devices, key elements in current electronics and optoelectronics. In the realm of magnetically ordered systems, akin to electronic bands in solids, spin waves exhibit characteristic dispersion relations, featuring sizeable magnon gaps in many antiferromagnets. The engineering of the magnon gap constitutes a relevant direction in current research on antiferromagnets, aiming to leverage their distinct properties for THz technologies, spintronics, or magnonics. In this study, we showcase the tunability of the magnon gap across the THz spectral range within an alloy comprising representative semiconducting van-der-Waals antiferromagnets FePS\(_3\) and NiPS\(_3\). These constituents share identical in-plane crystal structures, magnetic unit cells and the direction of the magnetic anisotropy, but differ in the amplitude and sign of the latter. Altogether these attributes result in the wide tunability of the magnon gap in the Fe\(_{1-x}\)Ni\(_x\)PS\(_3\) alloy in which the magnetic order is imposed by stronger, perpendicular anisotropy of iron.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alloying ; Alloys ; Antiferromagnetism ; Electron spin ; Energy gap ; Heterostructures ; Iron constituents ; Magnetic anisotropy ; Magnetic properties ; Magnons ; Metallurgical constituents ; Optoelectronics ; Spintronics</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3096437087?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>F Le Mardele</creatorcontrib><creatorcontrib>Mohelsky, I</creatorcontrib><creatorcontrib>Jana, D</creatorcontrib><creatorcontrib>Pawbake, A</creatorcontrib><creatorcontrib>Dzian, J</creatorcontrib><creatorcontrib>W -L Lee</creatorcontrib><creatorcontrib>Raju, K</creatorcontrib><creatorcontrib>Sankar, R</creatorcontrib><creatorcontrib>Faugeras, C</creatorcontrib><creatorcontrib>Potemski, M</creatorcontrib><creatorcontrib>Zhitomirsky, M E</creatorcontrib><creatorcontrib>Orlita, M</creatorcontrib><title>Tuning THz magnons in a mixed van-der-Waals antiferromagnet</title><title>arXiv.org</title><description>Alloying stands out as a pivotal technological method employed across various compounds, be they metallic, magnetic, or semiconducting, serving to fine-tune their properties to meet specific requirements. Ternary semiconductors represent a prominent example of such alloys. They offer fine-tuning of electronic bands, the band gap in particular, thus granting the technology of semiconductor heterostructures devices, key elements in current electronics and optoelectronics. In the realm of magnetically ordered systems, akin to electronic bands in solids, spin waves exhibit characteristic dispersion relations, featuring sizeable magnon gaps in many antiferromagnets. The engineering of the magnon gap constitutes a relevant direction in current research on antiferromagnets, aiming to leverage their distinct properties for THz technologies, spintronics, or magnonics. In this study, we showcase the tunability of the magnon gap across the THz spectral range within an alloy comprising representative semiconducting van-der-Waals antiferromagnets FePS\(_3\) and NiPS\(_3\). These constituents share identical in-plane crystal structures, magnetic unit cells and the direction of the magnetic anisotropy, but differ in the amplitude and sign of the latter. Altogether these attributes result in the wide tunability of the magnon gap in the Fe\(_{1-x}\)Ni\(_x\)PS\(_3\) alloy in which the magnetic order is imposed by stronger, perpendicular anisotropy of iron.</description><subject>Alloying</subject><subject>Alloys</subject><subject>Antiferromagnetism</subject><subject>Electron spin</subject><subject>Energy gap</subject><subject>Heterostructures</subject><subject>Iron constituents</subject><subject>Magnetic anisotropy</subject><subject>Magnetic properties</subject><subject>Magnons</subject><subject>Metallurgical constituents</subject><subject>Optoelectronics</subject><subject>Spintronics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDinNy8xLVwjxqFLITUzPy88rVsjMU0hUyM2sSE1RKEvM001JLdINT0zMKVZIzCvJTEstKsoHqUwt4WFgTQMKp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8sYGlmYmxuYGFuTFxqgDFVzbj</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>F Le Mardele</creator><creator>Mohelsky, I</creator><creator>Jana, D</creator><creator>Pawbake, A</creator><creator>Dzian, J</creator><creator>W -L Lee</creator><creator>Raju, K</creator><creator>Sankar, R</creator><creator>Faugeras, C</creator><creator>Potemski, M</creator><creator>Zhitomirsky, M E</creator><creator>Orlita, M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241104</creationdate><title>Tuning THz magnons in a mixed van-der-Waals antiferromagnet</title><author>F Le Mardele ; Mohelsky, I ; Jana, D ; Pawbake, A ; Dzian, J ; W -L Lee ; Raju, K ; Sankar, R ; Faugeras, C ; Potemski, M ; Zhitomirsky, M E ; Orlita, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30964370873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloying</topic><topic>Alloys</topic><topic>Antiferromagnetism</topic><topic>Electron spin</topic><topic>Energy gap</topic><topic>Heterostructures</topic><topic>Iron constituents</topic><topic>Magnetic anisotropy</topic><topic>Magnetic properties</topic><topic>Magnons</topic><topic>Metallurgical constituents</topic><topic>Optoelectronics</topic><topic>Spintronics</topic><toplevel>online_resources</toplevel><creatorcontrib>F Le Mardele</creatorcontrib><creatorcontrib>Mohelsky, I</creatorcontrib><creatorcontrib>Jana, D</creatorcontrib><creatorcontrib>Pawbake, A</creatorcontrib><creatorcontrib>Dzian, J</creatorcontrib><creatorcontrib>W -L Lee</creatorcontrib><creatorcontrib>Raju, K</creatorcontrib><creatorcontrib>Sankar, R</creatorcontrib><creatorcontrib>Faugeras, C</creatorcontrib><creatorcontrib>Potemski, M</creatorcontrib><creatorcontrib>Zhitomirsky, M E</creatorcontrib><creatorcontrib>Orlita, M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>F Le Mardele</au><au>Mohelsky, I</au><au>Jana, D</au><au>Pawbake, A</au><au>Dzian, J</au><au>W -L Lee</au><au>Raju, K</au><au>Sankar, R</au><au>Faugeras, C</au><au>Potemski, M</au><au>Zhitomirsky, M E</au><au>Orlita, M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Tuning THz magnons in a mixed van-der-Waals antiferromagnet</atitle><jtitle>arXiv.org</jtitle><date>2024-11-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Alloying stands out as a pivotal technological method employed across various compounds, be they metallic, magnetic, or semiconducting, serving to fine-tune their properties to meet specific requirements. Ternary semiconductors represent a prominent example of such alloys. They offer fine-tuning of electronic bands, the band gap in particular, thus granting the technology of semiconductor heterostructures devices, key elements in current electronics and optoelectronics. In the realm of magnetically ordered systems, akin to electronic bands in solids, spin waves exhibit characteristic dispersion relations, featuring sizeable magnon gaps in many antiferromagnets. The engineering of the magnon gap constitutes a relevant direction in current research on antiferromagnets, aiming to leverage their distinct properties for THz technologies, spintronics, or magnonics. In this study, we showcase the tunability of the magnon gap across the THz spectral range within an alloy comprising representative semiconducting van-der-Waals antiferromagnets FePS\(_3\) and NiPS\(_3\). These constituents share identical in-plane crystal structures, magnetic unit cells and the direction of the magnetic anisotropy, but differ in the amplitude and sign of the latter. Altogether these attributes result in the wide tunability of the magnon gap in the Fe\(_{1-x}\)Ni\(_x\)PS\(_3\) alloy in which the magnetic order is imposed by stronger, perpendicular anisotropy of iron.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3096437087 |
source | Publicly Available Content Database |
subjects | Alloying Alloys Antiferromagnetism Electron spin Energy gap Heterostructures Iron constituents Magnetic anisotropy Magnetic properties Magnons Metallurgical constituents Optoelectronics Spintronics |
title | Tuning THz magnons in a mixed van-der-Waals antiferromagnet |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Tuning%20THz%20magnons%20in%20a%20mixed%20van-der-Waals%20antiferromagnet&rft.jtitle=arXiv.org&rft.au=F%20Le%20Mardele&rft.date=2024-11-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3096437087%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30964370873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3096437087&rft_id=info:pmid/&rfr_iscdi=true |