Loading…
Semiclassical Quantization Conditions in Strained Moiré Lattices
In this article we generalize the Bohr–Sommerfeld rule for scalar symbols at a potential well to matrix-valued symbols having eigenvalues that may coalesce precisely at the bottom of the well. As an application, we study the existence of approximately flat bands in moiré heterostructures such as str...
Saved in:
Published in: | Communications in mathematical physics 2024-09, Vol.405 (9), Article 218 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c244t-e5dc6f1ef96885d186f2da29542815fe6d6df30f7922bb2efb3c2c70870ea96a3 |
container_end_page | |
container_issue | 9 |
container_start_page | |
container_title | Communications in mathematical physics |
container_volume | 405 |
creator | Becker, Simon Wittsten, Jens |
description | In this article we generalize the Bohr–Sommerfeld rule for scalar symbols at a potential well to matrix-valued symbols having eigenvalues that may coalesce precisely at the bottom of the well. As an application, we study the existence of approximately flat bands in moiré heterostructures such as strained two-dimensional honeycomb lattices in a model recently introduced by Timmel and Mele. |
doi_str_mv | 10.1007/s00220-024-05039-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3096659783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3096659783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-e5dc6f1ef96885d186f2da29542815fe6d6df30f7922bb2efb3c2c70870ea96a3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4GrAdfTmZiYzWZbiH1REquuQ5kdS2kxNplB9I5_DF3PqCO5c3bM437nwEXLO4JIB1FcZABEoYEmhAi7p7oCMWMmRgmTikIwAGFAumDgmJzkvAUCiECMymbt1MCudczB6VTxtdezCh-5CG4tpG23Yp1yEWMy7pEN0tnhoQ_r6LGa664Jx-ZQceb3K7uz3jsnLzfXz9I7OHm_vp5MZNViWHXWVNcIz56VomsqyRni0GmVVYsMq74QV1nPwtURcLND5BTdoamhqcFoKzcfkYtjdpPZt63Knlu02xf6l4iCFqGTd8L6FQ8ukNufkvNqksNbpXTFQe1VqUKV6VepHldr1EB-g3Jfjq0t_0_9Q3_C7bWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096659783</pqid></control><display><type>article</type><title>Semiclassical Quantization Conditions in Strained Moiré Lattices</title><source>Springer Nature</source><creator>Becker, Simon ; Wittsten, Jens</creator><creatorcontrib>Becker, Simon ; Wittsten, Jens</creatorcontrib><description>In this article we generalize the Bohr–Sommerfeld rule for scalar symbols at a potential well to matrix-valued symbols having eigenvalues that may coalesce precisely at the bottom of the well. As an application, we study the existence of approximately flat bands in moiré heterostructures such as strained two-dimensional honeycomb lattices in a model recently introduced by Timmel and Mele.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-024-05039-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Eigenvalues ; Heterostructures ; Lattices ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Symbols ; Theoretical</subject><ispartof>Communications in mathematical physics, 2024-09, Vol.405 (9), Article 218</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-e5dc6f1ef96885d186f2da29542815fe6d6df30f7922bb2efb3c2c70870ea96a3</cites><orcidid>0000-0002-0905-6188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Becker, Simon</creatorcontrib><creatorcontrib>Wittsten, Jens</creatorcontrib><title>Semiclassical Quantization Conditions in Strained Moiré Lattices</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>In this article we generalize the Bohr–Sommerfeld rule for scalar symbols at a potential well to matrix-valued symbols having eigenvalues that may coalesce precisely at the bottom of the well. As an application, we study the existence of approximately flat bands in moiré heterostructures such as strained two-dimensional honeycomb lattices in a model recently introduced by Timmel and Mele.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Eigenvalues</subject><subject>Heterostructures</subject><subject>Lattices</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Symbols</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4GrAdfTmZiYzWZbiH1REquuQ5kdS2kxNplB9I5_DF3PqCO5c3bM437nwEXLO4JIB1FcZABEoYEmhAi7p7oCMWMmRgmTikIwAGFAumDgmJzkvAUCiECMymbt1MCudczB6VTxtdezCh-5CG4tpG23Yp1yEWMy7pEN0tnhoQ_r6LGa664Jx-ZQceb3K7uz3jsnLzfXz9I7OHm_vp5MZNViWHXWVNcIz56VomsqyRni0GmVVYsMq74QV1nPwtURcLND5BTdoamhqcFoKzcfkYtjdpPZt63Knlu02xf6l4iCFqGTd8L6FQ8ukNufkvNqksNbpXTFQe1VqUKV6VepHldr1EB-g3Jfjq0t_0_9Q3_C7bWA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Becker, Simon</creator><creator>Wittsten, Jens</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0905-6188</orcidid></search><sort><creationdate>20240901</creationdate><title>Semiclassical Quantization Conditions in Strained Moiré Lattices</title><author>Becker, Simon ; Wittsten, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-e5dc6f1ef96885d186f2da29542815fe6d6df30f7922bb2efb3c2c70870ea96a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Eigenvalues</topic><topic>Heterostructures</topic><topic>Lattices</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Symbols</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Simon</creatorcontrib><creatorcontrib>Wittsten, Jens</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Simon</au><au>Wittsten, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiclassical Quantization Conditions in Strained Moiré Lattices</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>405</volume><issue>9</issue><artnum>218</artnum><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>In this article we generalize the Bohr–Sommerfeld rule for scalar symbols at a potential well to matrix-valued symbols having eigenvalues that may coalesce precisely at the bottom of the well. As an application, we study the existence of approximately flat bands in moiré heterostructures such as strained two-dimensional honeycomb lattices in a model recently introduced by Timmel and Mele.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-024-05039-x</doi><orcidid>https://orcid.org/0000-0002-0905-6188</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2024-09, Vol.405 (9), Article 218 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_3096659783 |
source | Springer Nature |
subjects | Classical and Quantum Gravitation Complex Systems Eigenvalues Heterostructures Lattices Mathematical and Computational Physics Mathematical Physics Physics Physics and Astronomy Quantum Physics Relativity Theory Symbols Theoretical |
title | Semiclassical Quantization Conditions in Strained Moiré Lattices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiclassical%20Quantization%20Conditions%20in%20Strained%20Moir%C3%A9%20Lattices&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Becker,%20Simon&rft.date=2024-09-01&rft.volume=405&rft.issue=9&rft.artnum=218&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-024-05039-x&rft_dat=%3Cproquest_cross%3E3096659783%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-e5dc6f1ef96885d186f2da29542815fe6d6df30f7922bb2efb3c2c70870ea96a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3096659783&rft_id=info:pmid/&rfr_iscdi=true |