Loading…

Semiclassical Quantization Conditions in Strained Moiré Lattices

In this article we generalize the Bohr–Sommerfeld rule for scalar symbols at a potential well to matrix-valued symbols having eigenvalues that may coalesce precisely at the bottom of the well. As an application, we study the existence of approximately flat bands in moiré heterostructures such as str...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2024-09, Vol.405 (9), Article 218
Main Authors: Becker, Simon, Wittsten, Jens
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c244t-e5dc6f1ef96885d186f2da29542815fe6d6df30f7922bb2efb3c2c70870ea96a3
container_end_page
container_issue 9
container_start_page
container_title Communications in mathematical physics
container_volume 405
creator Becker, Simon
Wittsten, Jens
description In this article we generalize the Bohr–Sommerfeld rule for scalar symbols at a potential well to matrix-valued symbols having eigenvalues that may coalesce precisely at the bottom of the well. As an application, we study the existence of approximately flat bands in moiré heterostructures such as strained two-dimensional honeycomb lattices in a model recently introduced by Timmel and Mele.
doi_str_mv 10.1007/s00220-024-05039-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3096659783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3096659783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-e5dc6f1ef96885d186f2da29542815fe6d6df30f7922bb2efb3c2c70870ea96a3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4GrAdfTmZiYzWZbiH1REquuQ5kdS2kxNplB9I5_DF3PqCO5c3bM437nwEXLO4JIB1FcZABEoYEmhAi7p7oCMWMmRgmTikIwAGFAumDgmJzkvAUCiECMymbt1MCudczB6VTxtdezCh-5CG4tpG23Yp1yEWMy7pEN0tnhoQ_r6LGa664Jx-ZQceb3K7uz3jsnLzfXz9I7OHm_vp5MZNViWHXWVNcIz56VomsqyRni0GmVVYsMq74QV1nPwtURcLND5BTdoamhqcFoKzcfkYtjdpPZt63Knlu02xf6l4iCFqGTd8L6FQ8ukNufkvNqksNbpXTFQe1VqUKV6VepHldr1EB-g3Jfjq0t_0_9Q3_C7bWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096659783</pqid></control><display><type>article</type><title>Semiclassical Quantization Conditions in Strained Moiré Lattices</title><source>Springer Nature</source><creator>Becker, Simon ; Wittsten, Jens</creator><creatorcontrib>Becker, Simon ; Wittsten, Jens</creatorcontrib><description>In this article we generalize the Bohr–Sommerfeld rule for scalar symbols at a potential well to matrix-valued symbols having eigenvalues that may coalesce precisely at the bottom of the well. As an application, we study the existence of approximately flat bands in moiré heterostructures such as strained two-dimensional honeycomb lattices in a model recently introduced by Timmel and Mele.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-024-05039-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Eigenvalues ; Heterostructures ; Lattices ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Symbols ; Theoretical</subject><ispartof>Communications in mathematical physics, 2024-09, Vol.405 (9), Article 218</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-e5dc6f1ef96885d186f2da29542815fe6d6df30f7922bb2efb3c2c70870ea96a3</cites><orcidid>0000-0002-0905-6188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Becker, Simon</creatorcontrib><creatorcontrib>Wittsten, Jens</creatorcontrib><title>Semiclassical Quantization Conditions in Strained Moiré Lattices</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>In this article we generalize the Bohr–Sommerfeld rule for scalar symbols at a potential well to matrix-valued symbols having eigenvalues that may coalesce precisely at the bottom of the well. As an application, we study the existence of approximately flat bands in moiré heterostructures such as strained two-dimensional honeycomb lattices in a model recently introduced by Timmel and Mele.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Eigenvalues</subject><subject>Heterostructures</subject><subject>Lattices</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Symbols</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4GrAdfTmZiYzWZbiH1REquuQ5kdS2kxNplB9I5_DF3PqCO5c3bM437nwEXLO4JIB1FcZABEoYEmhAi7p7oCMWMmRgmTikIwAGFAumDgmJzkvAUCiECMymbt1MCudczB6VTxtdezCh-5CG4tpG23Yp1yEWMy7pEN0tnhoQ_r6LGa664Jx-ZQceb3K7uz3jsnLzfXz9I7OHm_vp5MZNViWHXWVNcIz56VomsqyRni0GmVVYsMq74QV1nPwtURcLND5BTdoamhqcFoKzcfkYtjdpPZt63Knlu02xf6l4iCFqGTd8L6FQ8ukNufkvNqksNbpXTFQe1VqUKV6VepHldr1EB-g3Jfjq0t_0_9Q3_C7bWA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Becker, Simon</creator><creator>Wittsten, Jens</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0905-6188</orcidid></search><sort><creationdate>20240901</creationdate><title>Semiclassical Quantization Conditions in Strained Moiré Lattices</title><author>Becker, Simon ; Wittsten, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-e5dc6f1ef96885d186f2da29542815fe6d6df30f7922bb2efb3c2c70870ea96a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Eigenvalues</topic><topic>Heterostructures</topic><topic>Lattices</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Symbols</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Simon</creatorcontrib><creatorcontrib>Wittsten, Jens</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Simon</au><au>Wittsten, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiclassical Quantization Conditions in Strained Moiré Lattices</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>405</volume><issue>9</issue><artnum>218</artnum><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>In this article we generalize the Bohr–Sommerfeld rule for scalar symbols at a potential well to matrix-valued symbols having eigenvalues that may coalesce precisely at the bottom of the well. As an application, we study the existence of approximately flat bands in moiré heterostructures such as strained two-dimensional honeycomb lattices in a model recently introduced by Timmel and Mele.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-024-05039-x</doi><orcidid>https://orcid.org/0000-0002-0905-6188</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2024-09, Vol.405 (9), Article 218
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_3096659783
source Springer Nature
subjects Classical and Quantum Gravitation
Complex Systems
Eigenvalues
Heterostructures
Lattices
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Symbols
Theoretical
title Semiclassical Quantization Conditions in Strained Moiré Lattices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiclassical%20Quantization%20Conditions%20in%20Strained%20Moir%C3%A9%20Lattices&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Becker,%20Simon&rft.date=2024-09-01&rft.volume=405&rft.issue=9&rft.artnum=218&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-024-05039-x&rft_dat=%3Cproquest_cross%3E3096659783%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-e5dc6f1ef96885d186f2da29542815fe6d6df30f7922bb2efb3c2c70870ea96a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3096659783&rft_id=info:pmid/&rfr_iscdi=true