Loading…

Invariant Tori and Periodic Orbits in the FitzHugh-Nagumo System

The FitzHugh-Nagumo system is a \(4\)-parameter family of \(3\)D vector field used for modeling neural excitation and nerve impulse propagation. The origin represents a Hopf-zero equilibrium in the FitzHugh-Nagumo system for two classes of parameters. In this paper, we employ recent techniques in av...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-08
Main Authors: Cândido, Murilo R, Novaes, Douglas D, Sadri, Nasrin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cândido, Murilo R
Novaes, Douglas D
Sadri, Nasrin
description The FitzHugh-Nagumo system is a \(4\)-parameter family of \(3\)D vector field used for modeling neural excitation and nerve impulse propagation. The origin represents a Hopf-zero equilibrium in the FitzHugh-Nagumo system for two classes of parameters. In this paper, we employ recent techniques in averaging theory to investigate, besides periodic solutions, the bifurcation of invariant tori within the aforementioned families. We provide explicit generic conditions for the existence of these tori and analyze their stability properties. Furthermore, we employ the backward differentiation formula to solve the stiff differential equations and provide numerical simulations for each of the mentioned results.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3097264440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097264440</sourcerecordid><originalsourceid>FETCH-proquest_journals_30972644403</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwLsQkbXUTxFIXFexeoo3tLTbR_Aj69Dr4AE5n-M6IRIzzRbIUjE1I7FxPKWVZztKUR2S9009pUWoPlbEIUjdwVBZNgxc42DN6B6jBdwoK9O8ytF2yl20YDJxezqthRsZXeXMq_nVK5sW22pTJ3ZpHUM7XvQlWf6nmdJWzTAhB-X_XB_pvOIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097264440</pqid></control><display><type>article</type><title>Invariant Tori and Periodic Orbits in the FitzHugh-Nagumo System</title><source>Publicly Available Content Database</source><creator>Cândido, Murilo R ; Novaes, Douglas D ; Sadri, Nasrin</creator><creatorcontrib>Cândido, Murilo R ; Novaes, Douglas D ; Sadri, Nasrin</creatorcontrib><description>The FitzHugh-Nagumo system is a \(4\)-parameter family of \(3\)D vector field used for modeling neural excitation and nerve impulse propagation. The origin represents a Hopf-zero equilibrium in the FitzHugh-Nagumo system for two classes of parameters. In this paper, we employ recent techniques in averaging theory to investigate, besides periodic solutions, the bifurcation of invariant tori within the aforementioned families. We provide explicit generic conditions for the existence of these tori and analyze their stability properties. Furthermore, we employ the backward differentiation formula to solve the stiff differential equations and provide numerical simulations for each of the mentioned results.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bifurcation theory ; Differential equations ; Fields (mathematics) ; Invariants ; Orbits ; Parameters ; Toruses</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3097264440?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25744,37003,44581</link.rule.ids></links><search><creatorcontrib>Cândido, Murilo R</creatorcontrib><creatorcontrib>Novaes, Douglas D</creatorcontrib><creatorcontrib>Sadri, Nasrin</creatorcontrib><title>Invariant Tori and Periodic Orbits in the FitzHugh-Nagumo System</title><title>arXiv.org</title><description>The FitzHugh-Nagumo system is a \(4\)-parameter family of \(3\)D vector field used for modeling neural excitation and nerve impulse propagation. The origin represents a Hopf-zero equilibrium in the FitzHugh-Nagumo system for two classes of parameters. In this paper, we employ recent techniques in averaging theory to investigate, besides periodic solutions, the bifurcation of invariant tori within the aforementioned families. We provide explicit generic conditions for the existence of these tori and analyze their stability properties. Furthermore, we employ the backward differentiation formula to solve the stiff differential equations and provide numerical simulations for each of the mentioned results.</description><subject>Bifurcation theory</subject><subject>Differential equations</subject><subject>Fields (mathematics)</subject><subject>Invariants</subject><subject>Orbits</subject><subject>Parameters</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwLsQkbXUTxFIXFexeoo3tLTbR_Aj69Dr4AE5n-M6IRIzzRbIUjE1I7FxPKWVZztKUR2S9009pUWoPlbEIUjdwVBZNgxc42DN6B6jBdwoK9O8ytF2yl20YDJxezqthRsZXeXMq_nVK5sW22pTJ3ZpHUM7XvQlWf6nmdJWzTAhB-X_XB_pvOIw</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>Cândido, Murilo R</creator><creator>Novaes, Douglas D</creator><creator>Sadri, Nasrin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240823</creationdate><title>Invariant Tori and Periodic Orbits in the FitzHugh-Nagumo System</title><author>Cândido, Murilo R ; Novaes, Douglas D ; Sadri, Nasrin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30972644403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bifurcation theory</topic><topic>Differential equations</topic><topic>Fields (mathematics)</topic><topic>Invariants</topic><topic>Orbits</topic><topic>Parameters</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Cândido, Murilo R</creatorcontrib><creatorcontrib>Novaes, Douglas D</creatorcontrib><creatorcontrib>Sadri, Nasrin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cândido, Murilo R</au><au>Novaes, Douglas D</au><au>Sadri, Nasrin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Invariant Tori and Periodic Orbits in the FitzHugh-Nagumo System</atitle><jtitle>arXiv.org</jtitle><date>2024-08-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The FitzHugh-Nagumo system is a \(4\)-parameter family of \(3\)D vector field used for modeling neural excitation and nerve impulse propagation. The origin represents a Hopf-zero equilibrium in the FitzHugh-Nagumo system for two classes of parameters. In this paper, we employ recent techniques in averaging theory to investigate, besides periodic solutions, the bifurcation of invariant tori within the aforementioned families. We provide explicit generic conditions for the existence of these tori and analyze their stability properties. Furthermore, we employ the backward differentiation formula to solve the stiff differential equations and provide numerical simulations for each of the mentioned results.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3097264440
source Publicly Available Content Database
subjects Bifurcation theory
Differential equations
Fields (mathematics)
Invariants
Orbits
Parameters
Toruses
title Invariant Tori and Periodic Orbits in the FitzHugh-Nagumo System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Invariant%20Tori%20and%20Periodic%20Orbits%20in%20the%20FitzHugh-Nagumo%20System&rft.jtitle=arXiv.org&rft.au=C%C3%A2ndido,%20Murilo%20R&rft.date=2024-08-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3097264440%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30972644403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3097264440&rft_id=info:pmid/&rfr_iscdi=true