Loading…

Carbon black structural effect within kraft black liquor-based poly(HIPE): enhanced hydrogen storage and electro-capacitive properties

A biopolymer derived from Kraft Black Liquor (KBL), a byproduct of the paper industry composed mainly of lignin and hemicellulose, has been successfully filled with three different types of carbon black (CB) that differ in their specific surface areas, sizes, shapes and surface heteroatoms. These co...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-08, Vol.12 (34), p.2273-22714
Main Authors: Poupart, Romain, Invernizzi, Ronan, Deleuze, Hervé, Guerlou-Demourgues, Liliane, Olchowka, Jacob, Talaga, David, Servant, Laurent, Penin, Nicolas, Bobet, Jean-Louis, Backov, Rénal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c240t-d837c08a53f6e1c96bda89e10ac45d9a59501ed0068096d264a7c8c80e019b453
container_end_page 22714
container_issue 34
container_start_page 2273
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Poupart, Romain
Invernizzi, Ronan
Deleuze, Hervé
Guerlou-Demourgues, Liliane
Olchowka, Jacob
Talaga, David
Servant, Laurent
Penin, Nicolas
Bobet, Jean-Louis
Backov, Rénal
description A biopolymer derived from Kraft Black Liquor (KBL), a byproduct of the paper industry composed mainly of lignin and hemicellulose, has been successfully filled with three different types of carbon black (CB) that differ in their specific surface areas, sizes, shapes and surface heteroatoms. These composite CB-KBL dispersions have been subsequently employed to generate porous monoliths through an emulsion-polymerization templating process. After carbonization, the fillers' influence over the resulting carbon monolith structures and textures is investigated. In particular, beyond XRD, Raman spectroscopy demonstrates improved sample structuration through CB filler addition while nitrogen sorption measurements reveal the influence of the fillers over the final composite's porosities. Considering their properties and effectiveness, hydrogen storage at 77 K reveals that some materials offer up to 1.4 wt% of H 2 storage capacity, being higher than that of some commercial carbon materials (with the same specific surface) offering 1.2 wt% hydrogen retention. When addressing their electrochemical energy storage properties, some of these electrode materials deliver extremely promising specific capacities and rate capabilities, with values up to 47 mA h g −1 at 1 A g −1 in alkaline electrolyte, higher than those of the well-known "YP-80F" commercial material tested under the same conditions. These enhanced energy storage properties, while employing a high tonnage paper industry by-product as a carbonaceous source and carbon blacks as structural and textural modifiers, render these materials realistic candidates favoring a sustainable energy transition. A biopolymer derived from Kraft Black Liquor was successfully incorporated with three types of carbon black, each varying in their characteristics. The resulting carbon materials demonstrate promising performance in energy storage applications.
doi_str_mv 10.1039/d4ta02097a
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3097461364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097461364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-d837c08a53f6e1c96bda89e10ac45d9a59501ed0068096d264a7c8c80e019b453</originalsourceid><addsrcrecordid>eNpFkU9P3DAQxaMKpCLg0nslS70UpMB44zg2t9XyZ5FWogd6jib2hA2kcbAd0H4BPjemi5a5zOjpp6eZeVn2g8MZh0KfWxERZqAr_JYdzKCEvBJa7u1mpb5nxyE8QioFILU-yN4W6Bs3sKZH88RC9JOJk8eeUduSiey1i-tuYE8e2_gJ9d3z5HzeYCDLRtdvfi9v_1ydXDAa1jiYJK431rsHGpKf8_hADAfLqE9-3uUGRzRd7F6Ijd6N5GNH4Sjbb7EPdPzZD7O_11f3i2W-uru5XcxXuZkJiLlVRWVAYVm0krjRsrGoNHFAI0qrsdQlcLLpNgVa2pkUWBllFBBw3YiyOMxOtr5r7OvRd__Qb2qHXb2cr-oPDUQFsuTVC0_sry2b1nyeKMT60U1-SOvVRXqykLyQIlGnW8p4F4KndmfLof6Ipb4U9_P_scwT_HML-2B23FdsxTt2RInd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097461364</pqid></control><display><type>article</type><title>Carbon black structural effect within kraft black liquor-based poly(HIPE): enhanced hydrogen storage and electro-capacitive properties</title><source>Royal Society of Chemistry</source><creator>Poupart, Romain ; Invernizzi, Ronan ; Deleuze, Hervé ; Guerlou-Demourgues, Liliane ; Olchowka, Jacob ; Talaga, David ; Servant, Laurent ; Penin, Nicolas ; Bobet, Jean-Louis ; Backov, Rénal</creator><creatorcontrib>Poupart, Romain ; Invernizzi, Ronan ; Deleuze, Hervé ; Guerlou-Demourgues, Liliane ; Olchowka, Jacob ; Talaga, David ; Servant, Laurent ; Penin, Nicolas ; Bobet, Jean-Louis ; Backov, Rénal</creatorcontrib><description>A biopolymer derived from Kraft Black Liquor (KBL), a byproduct of the paper industry composed mainly of lignin and hemicellulose, has been successfully filled with three different types of carbon black (CB) that differ in their specific surface areas, sizes, shapes and surface heteroatoms. These composite CB-KBL dispersions have been subsequently employed to generate porous monoliths through an emulsion-polymerization templating process. After carbonization, the fillers' influence over the resulting carbon monolith structures and textures is investigated. In particular, beyond XRD, Raman spectroscopy demonstrates improved sample structuration through CB filler addition while nitrogen sorption measurements reveal the influence of the fillers over the final composite's porosities. Considering their properties and effectiveness, hydrogen storage at 77 K reveals that some materials offer up to 1.4 wt% of H 2 storage capacity, being higher than that of some commercial carbon materials (with the same specific surface) offering 1.2 wt% hydrogen retention. When addressing their electrochemical energy storage properties, some of these electrode materials deliver extremely promising specific capacities and rate capabilities, with values up to 47 mA h g −1 at 1 A g −1 in alkaline electrolyte, higher than those of the well-known "YP-80F" commercial material tested under the same conditions. These enhanced energy storage properties, while employing a high tonnage paper industry by-product as a carbonaceous source and carbon blacks as structural and textural modifiers, render these materials realistic candidates favoring a sustainable energy transition. A biopolymer derived from Kraft Black Liquor was successfully incorporated with three types of carbon black, each varying in their characteristics. The resulting carbon materials demonstrate promising performance in energy storage applications.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta02097a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Biopolymers ; Black carbon ; Black liquor ; Byproducts ; Carbon ; Carbon black ; Chemical Sciences ; Electrochemistry ; Electrode materials ; Emulsion polymerization ; Energy storage ; Extreme values ; Fillers ; Hemicellulose ; Hydrogen ; Hydrogen storage ; Material chemistry ; Pulp &amp; paper industry ; Pulp wastes ; Raman spectroscopy ; Specific surface ; Storage capacity ; Sustainable energy</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-08, Vol.12 (34), p.2273-22714</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-d837c08a53f6e1c96bda89e10ac45d9a59501ed0068096d264a7c8c80e019b453</cites><orcidid>0000-0001-7430-0266 ; 0000-0001-5946-8917 ; 0000-0002-5626-8212 ; 0000-0001-7838-7004 ; 0000-0002-0653-2572 ; 0000-0003-1481-9220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04706517$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Poupart, Romain</creatorcontrib><creatorcontrib>Invernizzi, Ronan</creatorcontrib><creatorcontrib>Deleuze, Hervé</creatorcontrib><creatorcontrib>Guerlou-Demourgues, Liliane</creatorcontrib><creatorcontrib>Olchowka, Jacob</creatorcontrib><creatorcontrib>Talaga, David</creatorcontrib><creatorcontrib>Servant, Laurent</creatorcontrib><creatorcontrib>Penin, Nicolas</creatorcontrib><creatorcontrib>Bobet, Jean-Louis</creatorcontrib><creatorcontrib>Backov, Rénal</creatorcontrib><title>Carbon black structural effect within kraft black liquor-based poly(HIPE): enhanced hydrogen storage and electro-capacitive properties</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>A biopolymer derived from Kraft Black Liquor (KBL), a byproduct of the paper industry composed mainly of lignin and hemicellulose, has been successfully filled with three different types of carbon black (CB) that differ in their specific surface areas, sizes, shapes and surface heteroatoms. These composite CB-KBL dispersions have been subsequently employed to generate porous monoliths through an emulsion-polymerization templating process. After carbonization, the fillers' influence over the resulting carbon monolith structures and textures is investigated. In particular, beyond XRD, Raman spectroscopy demonstrates improved sample structuration through CB filler addition while nitrogen sorption measurements reveal the influence of the fillers over the final composite's porosities. Considering their properties and effectiveness, hydrogen storage at 77 K reveals that some materials offer up to 1.4 wt% of H 2 storage capacity, being higher than that of some commercial carbon materials (with the same specific surface) offering 1.2 wt% hydrogen retention. When addressing their electrochemical energy storage properties, some of these electrode materials deliver extremely promising specific capacities and rate capabilities, with values up to 47 mA h g −1 at 1 A g −1 in alkaline electrolyte, higher than those of the well-known "YP-80F" commercial material tested under the same conditions. These enhanced energy storage properties, while employing a high tonnage paper industry by-product as a carbonaceous source and carbon blacks as structural and textural modifiers, render these materials realistic candidates favoring a sustainable energy transition. A biopolymer derived from Kraft Black Liquor was successfully incorporated with three types of carbon black, each varying in their characteristics. The resulting carbon materials demonstrate promising performance in energy storage applications.</description><subject>Biopolymers</subject><subject>Black carbon</subject><subject>Black liquor</subject><subject>Byproducts</subject><subject>Carbon</subject><subject>Carbon black</subject><subject>Chemical Sciences</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Emulsion polymerization</subject><subject>Energy storage</subject><subject>Extreme values</subject><subject>Fillers</subject><subject>Hemicellulose</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Material chemistry</subject><subject>Pulp &amp; paper industry</subject><subject>Pulp wastes</subject><subject>Raman spectroscopy</subject><subject>Specific surface</subject><subject>Storage capacity</subject><subject>Sustainable energy</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkU9P3DAQxaMKpCLg0nslS70UpMB44zg2t9XyZ5FWogd6jib2hA2kcbAd0H4BPjemi5a5zOjpp6eZeVn2g8MZh0KfWxERZqAr_JYdzKCEvBJa7u1mpb5nxyE8QioFILU-yN4W6Bs3sKZH88RC9JOJk8eeUduSiey1i-tuYE8e2_gJ9d3z5HzeYCDLRtdvfi9v_1ydXDAa1jiYJK431rsHGpKf8_hADAfLqE9-3uUGRzRd7F6Ijd6N5GNH4Sjbb7EPdPzZD7O_11f3i2W-uru5XcxXuZkJiLlVRWVAYVm0krjRsrGoNHFAI0qrsdQlcLLpNgVa2pkUWBllFBBw3YiyOMxOtr5r7OvRd__Qb2qHXb2cr-oPDUQFsuTVC0_sry2b1nyeKMT60U1-SOvVRXqykLyQIlGnW8p4F4KndmfLof6Ipb4U9_P_scwT_HML-2B23FdsxTt2RInd</recordid><startdate>20240827</startdate><enddate>20240827</enddate><creator>Poupart, Romain</creator><creator>Invernizzi, Ronan</creator><creator>Deleuze, Hervé</creator><creator>Guerlou-Demourgues, Liliane</creator><creator>Olchowka, Jacob</creator><creator>Talaga, David</creator><creator>Servant, Laurent</creator><creator>Penin, Nicolas</creator><creator>Bobet, Jean-Louis</creator><creator>Backov, Rénal</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7430-0266</orcidid><orcidid>https://orcid.org/0000-0001-5946-8917</orcidid><orcidid>https://orcid.org/0000-0002-5626-8212</orcidid><orcidid>https://orcid.org/0000-0001-7838-7004</orcidid><orcidid>https://orcid.org/0000-0002-0653-2572</orcidid><orcidid>https://orcid.org/0000-0003-1481-9220</orcidid></search><sort><creationdate>20240827</creationdate><title>Carbon black structural effect within kraft black liquor-based poly(HIPE): enhanced hydrogen storage and electro-capacitive properties</title><author>Poupart, Romain ; Invernizzi, Ronan ; Deleuze, Hervé ; Guerlou-Demourgues, Liliane ; Olchowka, Jacob ; Talaga, David ; Servant, Laurent ; Penin, Nicolas ; Bobet, Jean-Louis ; Backov, Rénal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-d837c08a53f6e1c96bda89e10ac45d9a59501ed0068096d264a7c8c80e019b453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biopolymers</topic><topic>Black carbon</topic><topic>Black liquor</topic><topic>Byproducts</topic><topic>Carbon</topic><topic>Carbon black</topic><topic>Chemical Sciences</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Emulsion polymerization</topic><topic>Energy storage</topic><topic>Extreme values</topic><topic>Fillers</topic><topic>Hemicellulose</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Material chemistry</topic><topic>Pulp &amp; paper industry</topic><topic>Pulp wastes</topic><topic>Raman spectroscopy</topic><topic>Specific surface</topic><topic>Storage capacity</topic><topic>Sustainable energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poupart, Romain</creatorcontrib><creatorcontrib>Invernizzi, Ronan</creatorcontrib><creatorcontrib>Deleuze, Hervé</creatorcontrib><creatorcontrib>Guerlou-Demourgues, Liliane</creatorcontrib><creatorcontrib>Olchowka, Jacob</creatorcontrib><creatorcontrib>Talaga, David</creatorcontrib><creatorcontrib>Servant, Laurent</creatorcontrib><creatorcontrib>Penin, Nicolas</creatorcontrib><creatorcontrib>Bobet, Jean-Louis</creatorcontrib><creatorcontrib>Backov, Rénal</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poupart, Romain</au><au>Invernizzi, Ronan</au><au>Deleuze, Hervé</au><au>Guerlou-Demourgues, Liliane</au><au>Olchowka, Jacob</au><au>Talaga, David</au><au>Servant, Laurent</au><au>Penin, Nicolas</au><au>Bobet, Jean-Louis</au><au>Backov, Rénal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon black structural effect within kraft black liquor-based poly(HIPE): enhanced hydrogen storage and electro-capacitive properties</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-08-27</date><risdate>2024</risdate><volume>12</volume><issue>34</issue><spage>2273</spage><epage>22714</epage><pages>2273-22714</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>A biopolymer derived from Kraft Black Liquor (KBL), a byproduct of the paper industry composed mainly of lignin and hemicellulose, has been successfully filled with three different types of carbon black (CB) that differ in their specific surface areas, sizes, shapes and surface heteroatoms. These composite CB-KBL dispersions have been subsequently employed to generate porous monoliths through an emulsion-polymerization templating process. After carbonization, the fillers' influence over the resulting carbon monolith structures and textures is investigated. In particular, beyond XRD, Raman spectroscopy demonstrates improved sample structuration through CB filler addition while nitrogen sorption measurements reveal the influence of the fillers over the final composite's porosities. Considering their properties and effectiveness, hydrogen storage at 77 K reveals that some materials offer up to 1.4 wt% of H 2 storage capacity, being higher than that of some commercial carbon materials (with the same specific surface) offering 1.2 wt% hydrogen retention. When addressing their electrochemical energy storage properties, some of these electrode materials deliver extremely promising specific capacities and rate capabilities, with values up to 47 mA h g −1 at 1 A g −1 in alkaline electrolyte, higher than those of the well-known "YP-80F" commercial material tested under the same conditions. These enhanced energy storage properties, while employing a high tonnage paper industry by-product as a carbonaceous source and carbon blacks as structural and textural modifiers, render these materials realistic candidates favoring a sustainable energy transition. A biopolymer derived from Kraft Black Liquor was successfully incorporated with three types of carbon black, each varying in their characteristics. The resulting carbon materials demonstrate promising performance in energy storage applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta02097a</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7430-0266</orcidid><orcidid>https://orcid.org/0000-0001-5946-8917</orcidid><orcidid>https://orcid.org/0000-0002-5626-8212</orcidid><orcidid>https://orcid.org/0000-0001-7838-7004</orcidid><orcidid>https://orcid.org/0000-0002-0653-2572</orcidid><orcidid>https://orcid.org/0000-0003-1481-9220</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-08, Vol.12 (34), p.2273-22714
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_3097461364
source Royal Society of Chemistry
subjects Biopolymers
Black carbon
Black liquor
Byproducts
Carbon
Carbon black
Chemical Sciences
Electrochemistry
Electrode materials
Emulsion polymerization
Energy storage
Extreme values
Fillers
Hemicellulose
Hydrogen
Hydrogen storage
Material chemistry
Pulp & paper industry
Pulp wastes
Raman spectroscopy
Specific surface
Storage capacity
Sustainable energy
title Carbon black structural effect within kraft black liquor-based poly(HIPE): enhanced hydrogen storage and electro-capacitive properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A10%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20black%20structural%20effect%20within%20kraft%20black%20liquor-based%20poly(HIPE):%20enhanced%20hydrogen%20storage%20and%20electro-capacitive%20properties&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Poupart,%20Romain&rft.date=2024-08-27&rft.volume=12&rft.issue=34&rft.spage=2273&rft.epage=22714&rft.pages=2273-22714&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta02097a&rft_dat=%3Cproquest_cross%3E3097461364%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c240t-d837c08a53f6e1c96bda89e10ac45d9a59501ed0068096d264a7c8c80e019b453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3097461364&rft_id=info:pmid/&rfr_iscdi=true