Loading…

Core–shell magnetic mesoporous 3-aminophenol–formaldehyde resin microspheres with rich functional groups via interface co-assembly and polymerization

Core–shell magnetic polymer microspheres with porous organic shells are highly desired for adsorption, separation, delivery/immobilization of guest objects in catalysis, and drug release. Herein, an amphiphilic block copolymer-directed interfacial assembly and polymerization strategy was reported to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-08, Vol.12 (34), p.22627-22636
Main Authors: Li, Jiarong, Liu, Shude, Xie, Yuanzhao, Jiang, Fengluan, Huang, Xinyu, Xia, Jianfeng, Wu, Limin, Deng, Yonghui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Core–shell magnetic polymer microspheres with porous organic shells are highly desired for adsorption, separation, delivery/immobilization of guest objects in catalysis, and drug release. Herein, an amphiphilic block copolymer-directed interfacial assembly and polymerization strategy was reported to synthesize magnetic mesoporous 3-aminophenol–formaldehyde resin (MMAPF) microspheres. The uniform MMAPF microspheres exhibit well-defined core–shell structures, controllable porous shell thickness, high magnetization, and superparamagnetic properties. The abundant hydroxyl and amino groups in the porous shell offer the exceptional capability for stable immobilization of ultrafine Au nanoparticles, which can serve as a magnetically recoverable heterogeneous catalyst for catalyzing the hydrogenation of 4-nitrophenol with a fast reaction rate constant (0.59 min −1 ) and conversion rate (99%) at room temperature and good recycling stability.
ISSN:2050-7488
2050-7496
DOI:10.1039/D4TA04277H