Loading…

Acidic Influence on Geopolymerization: A Thorough Study Using HCl and Iraqi Kaolin

Recent advances have drawn the attention of many researchers in the creation of innovative catalysts that are not only effective but also cost-effective and ecologically benign. The large similarity between the geopolymers and zeolitic materials makes geopolymers suitable for catalytic applications....

Full description

Saved in:
Bibliographic Details
Published in:Russian journal of applied chemistry 2024, Vol.97 (1), p.104-113
Main Authors: Jabar, Tuqa A., Alzuhairi, Mohammed A., Abed, Mayyadah S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent advances have drawn the attention of many researchers in the creation of innovative catalysts that are not only effective but also cost-effective and ecologically benign. The large similarity between the geopolymers and zeolitic materials makes geopolymers suitable for catalytic applications. This research works on preparing geopolymer catalysts utilizing two different types of Iraqi kaolin (white and red kaolin) with six different mixes. Additionally, the hydrochloric acid (2M) treatment was conducted on the geopolymer base kaolin to increase surface area, and catalytic activity (improving the adsorption capacity) makes geopolymer more suitable for catalyst applications. The characterization of the geopolymer involved techniques such as XRD, XRF, FTIR, and BET. FTIR results showed changes in OH group structures (increase Brønsted & Lewis acid sites) essential for catalyst applications. XRD results indicated the presence of zeolite and Annite-phase along with amorphous phases. BET analysis of large increased surface area and pore size in acid-treated geopolymers. This research suggests the potential for improving inexpensive geopolymer catalysts, opening the door to cost-effective, sustainable, and high-performance catalysts for use in industries requiring porous materials and heavy oil processing, and paving the way for a greener and more environmentally conscious future.
ISSN:1070-4272
1608-3296
DOI:10.1134/S1070427224010105