Loading…

Weak Silting Modules

It is well-established that weak n -tilting modules serve as generalizations of both n -tilting and n -cotilting modules. The primary objective of this paper is to delineate the characterizations of weak n -silting modules and elaborate on their applications. Specifically, we aim to establish the &q...

Full description

Saved in:
Bibliographic Details
Published in:Algebras and representation theory 2024-08, Vol.27 (4), p.1681-1707
Main Authors: Yuan, Qianqian, Yao, Hailou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-72ffc91a27f4b9989da4e5cc5d4059d71919e1d581de547898d6eb1f5d6893993
container_end_page 1707
container_issue 4
container_start_page 1681
container_title Algebras and representation theory
container_volume 27
creator Yuan, Qianqian
Yao, Hailou
description It is well-established that weak n -tilting modules serve as generalizations of both n -tilting and n -cotilting modules. The primary objective of this paper is to delineate the characterizations of weak n -silting modules and elaborate on their applications. Specifically, we aim to establish the "triangular relation" within the framework of silting theory in a module category, and provide novel characterizations of weak n -tilting modules. Furthermore, we delve into the properties of n -(co)silting modules and their interrelations with some other types of modules. Additionally, we explore the conditions under which a weak n -silting module can be classified as partial n -silting, weak n -tilting, or partial n -tilting. Notably, we establish and prove that Bazzoni’s renowned characterization of pure-injectivity for cotilting modules remains valid for weak n -silting modules with respect to F T . Lastly, we investigate weak n -silting and weak n -tilting objects in a morphism category.
doi_str_mv 10.1007/s10468-024-10276-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3097478243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097478243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-72ffc91a27f4b9989da4e5cc5d4059d71919e1d581de547898d6eb1f5d6893993</originalsourceid><addsrcrecordid>eNp9j79PwzAQhS0EEqWwMTFVYjbc-UfsG1EFBamIARBsVho7VUpIip0O_PcYgsTGdG943zt9jJ0hXCCAuUwIqrAchOIIwhTc7rEJaiM4gaH9nKUtOAn5esiOUtoAABUWJ-z0JZRvs8emHZpuPbvv_a4N6Zgd1GWbwsnvnbLnm-un-S1fPizu5ldLXgmAgRtR1xVhKUytVkSWfKmCrirtFWjyBgkpoNcWfdDKWLK-CCustS8sSSI5Zefj7jb2H7uQBrfpd7HLL50EMhkRSuaWGFtV7FOKoXbb2LyX8dMhuG97N9q7bO9-7J3NkByhlMvdOsS_6X-oL85xWko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097478243</pqid></control><display><type>article</type><title>Weak Silting Modules</title><source>Springer Nature</source><creator>Yuan, Qianqian ; Yao, Hailou</creator><creatorcontrib>Yuan, Qianqian ; Yao, Hailou</creatorcontrib><description>It is well-established that weak n -tilting modules serve as generalizations of both n -tilting and n -cotilting modules. The primary objective of this paper is to delineate the characterizations of weak n -silting modules and elaborate on their applications. Specifically, we aim to establish the "triangular relation" within the framework of silting theory in a module category, and provide novel characterizations of weak n -tilting modules. Furthermore, we delve into the properties of n -(co)silting modules and their interrelations with some other types of modules. Additionally, we explore the conditions under which a weak n -silting module can be classified as partial n -silting, weak n -tilting, or partial n -tilting. Notably, we establish and prove that Bazzoni’s renowned characterization of pure-injectivity for cotilting modules remains valid for weak n -silting modules with respect to F T . Lastly, we investigate weak n -silting and weak n -tilting objects in a morphism category.</description><identifier>ISSN: 1386-923X</identifier><identifier>EISSN: 1572-9079</identifier><identifier>DOI: 10.1007/s10468-024-10276-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Associative Rings and Algebras ; Commutative Rings and Algebras ; Mathematics ; Mathematics and Statistics ; Modules ; Non-associative Rings and Algebras</subject><ispartof>Algebras and representation theory, 2024-08, Vol.27 (4), p.1681-1707</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-72ffc91a27f4b9989da4e5cc5d4059d71919e1d581de547898d6eb1f5d6893993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yuan, Qianqian</creatorcontrib><creatorcontrib>Yao, Hailou</creatorcontrib><title>Weak Silting Modules</title><title>Algebras and representation theory</title><addtitle>Algebr Represent Theor</addtitle><description>It is well-established that weak n -tilting modules serve as generalizations of both n -tilting and n -cotilting modules. The primary objective of this paper is to delineate the characterizations of weak n -silting modules and elaborate on their applications. Specifically, we aim to establish the "triangular relation" within the framework of silting theory in a module category, and provide novel characterizations of weak n -tilting modules. Furthermore, we delve into the properties of n -(co)silting modules and their interrelations with some other types of modules. Additionally, we explore the conditions under which a weak n -silting module can be classified as partial n -silting, weak n -tilting, or partial n -tilting. Notably, we establish and prove that Bazzoni’s renowned characterization of pure-injectivity for cotilting modules remains valid for weak n -silting modules with respect to F T . Lastly, we investigate weak n -silting and weak n -tilting objects in a morphism category.</description><subject>Associative Rings and Algebras</subject><subject>Commutative Rings and Algebras</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><subject>Non-associative Rings and Algebras</subject><issn>1386-923X</issn><issn>1572-9079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j79PwzAQhS0EEqWwMTFVYjbc-UfsG1EFBamIARBsVho7VUpIip0O_PcYgsTGdG943zt9jJ0hXCCAuUwIqrAchOIIwhTc7rEJaiM4gaH9nKUtOAn5esiOUtoAABUWJ-z0JZRvs8emHZpuPbvv_a4N6Zgd1GWbwsnvnbLnm-un-S1fPizu5ldLXgmAgRtR1xVhKUytVkSWfKmCrirtFWjyBgkpoNcWfdDKWLK-CCustS8sSSI5Zefj7jb2H7uQBrfpd7HLL50EMhkRSuaWGFtV7FOKoXbb2LyX8dMhuG97N9q7bO9-7J3NkByhlMvdOsS_6X-oL85xWko</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Yuan, Qianqian</creator><creator>Yao, Hailou</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Weak Silting Modules</title><author>Yuan, Qianqian ; Yao, Hailou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-72ffc91a27f4b9989da4e5cc5d4059d71919e1d581de547898d6eb1f5d6893993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Associative Rings and Algebras</topic><topic>Commutative Rings and Algebras</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><topic>Non-associative Rings and Algebras</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Qianqian</creatorcontrib><creatorcontrib>Yao, Hailou</creatorcontrib><collection>CrossRef</collection><jtitle>Algebras and representation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Qianqian</au><au>Yao, Hailou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak Silting Modules</atitle><jtitle>Algebras and representation theory</jtitle><stitle>Algebr Represent Theor</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>27</volume><issue>4</issue><spage>1681</spage><epage>1707</epage><pages>1681-1707</pages><issn>1386-923X</issn><eissn>1572-9079</eissn><abstract>It is well-established that weak n -tilting modules serve as generalizations of both n -tilting and n -cotilting modules. The primary objective of this paper is to delineate the characterizations of weak n -silting modules and elaborate on their applications. Specifically, we aim to establish the "triangular relation" within the framework of silting theory in a module category, and provide novel characterizations of weak n -tilting modules. Furthermore, we delve into the properties of n -(co)silting modules and their interrelations with some other types of modules. Additionally, we explore the conditions under which a weak n -silting module can be classified as partial n -silting, weak n -tilting, or partial n -tilting. Notably, we establish and prove that Bazzoni’s renowned characterization of pure-injectivity for cotilting modules remains valid for weak n -silting modules with respect to F T . Lastly, we investigate weak n -silting and weak n -tilting objects in a morphism category.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10468-024-10276-8</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-923X
ispartof Algebras and representation theory, 2024-08, Vol.27 (4), p.1681-1707
issn 1386-923X
1572-9079
language eng
recordid cdi_proquest_journals_3097478243
source Springer Nature
subjects Associative Rings and Algebras
Commutative Rings and Algebras
Mathematics
Mathematics and Statistics
Modules
Non-associative Rings and Algebras
title Weak Silting Modules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20Silting%20Modules&rft.jtitle=Algebras%20and%20representation%20theory&rft.au=Yuan,%20Qianqian&rft.date=2024-08-01&rft.volume=27&rft.issue=4&rft.spage=1681&rft.epage=1707&rft.pages=1681-1707&rft.issn=1386-923X&rft.eissn=1572-9079&rft_id=info:doi/10.1007/s10468-024-10276-8&rft_dat=%3Cproquest_cross%3E3097478243%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-72ffc91a27f4b9989da4e5cc5d4059d71919e1d581de547898d6eb1f5d6893993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3097478243&rft_id=info:pmid/&rfr_iscdi=true