Loading…

Low‐Interception Waveforms: To Prevent the Recognition of Spectrum Waveform Modulation via Adversarial Examples

Deep learning is applied to many complex tasks in the field of wireless communication, such as modulation recognition of spectrum waveforms, because of its convenience and efficiency. This leads to the problem of a malicious third party using a deep learning model to easily recognize the modulation...

Full description

Saved in:
Bibliographic Details
Published in:Radio science 2024-08, Vol.59 (8), p.n/a
Main Authors: Tan, Jia, Xie, Haidong, Zhang, Xiaoying, Ji, Nan, Liao, Haihua, Yu, ZuGuo, Xiang, Xueshuang, Liu, Naijin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1933-f64066dd29e8069eea29054afa1c7945a473a7170fddd2ebefbed49a3c324b513
container_end_page n/a
container_issue 8
container_start_page
container_title Radio science
container_volume 59
creator Tan, Jia
Xie, Haidong
Zhang, Xiaoying
Ji, Nan
Liao, Haihua
Yu, ZuGuo
Xiang, Xueshuang
Liu, Naijin
description Deep learning is applied to many complex tasks in the field of wireless communication, such as modulation recognition of spectrum waveforms, because of its convenience and efficiency. This leads to the problem of a malicious third party using a deep learning model to easily recognize the modulation format of the transmitted waveform. Some existing works address this problem directly using the concept of adversarial examples in the computer vision field without fully considering the characteristics of the waveform transmission in the physical world. Therefore, we propose two low‐interception waveforms (LIWs) generation methods, the LIW and ULIW algorithms, which can reduce the probability of the modulation being recognized by a third party without affecting the reliable communication of the friendly party. Among them, ULIW improves LIW algorithm by simulating channel noise during training cycle, and substantially reduces the perturbation magnitude while maintaining low interception accuracy. Our LIW and ULIW exhibit significant low‐interception performance in both numerical simulations and hardware experiments. Key Points Define the low‐interception question, and give the mathematical model, application scenarios, and evaluation criteria Propose the ULIW algorithm based on our LIW algorithm, which substantially reduces perturbation while maintaining low interception accuracy Verify the low‐interception performance of LIW and ULIW in both the digital and physical worlds
doi_str_mv 10.1029/2022RS007486
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3097630632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097630632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1933-f64066dd29e8069eea29054afa1c7945a473a7170fddd2ebefbed49a3c324b513</originalsourceid><addsrcrecordid>eNp90M9OwkAQBvCN0UREbz7AJl6tzv7plvVGEJUEowGM3pqlnWpJ6dbdUuTmI_iMPokIxnjyNIf5fTPJR8gxgzMGXJ9z4Hw0BohkR-2QFtNSBpHWT7ukBSA7gVIg98mB9zMAJkMlW-R1aJef7x-DskaXYFXntqSPpsHMurm_oBNL7x02WNa0fkE6wsQ-l_lG2YyOK0xqt5j_JuitTReF2eyb3NBu2qDzxuWmoP03M68K9IdkLzOFx6Of2SYPV_1J7yYY3l0Pet1hkDAtRJApCUqlKdfYAaURDdcQSpMZlkRahkZGwkQsgixdI5xiNsVUaiMSweU0ZKJNTrZ3K2dfF-jreGYXrly_jAXoSAlQgq_V6VYlznrvMIsrl8-NW8UM4u9S47-lrjnf8mVe4OpfG48ux5yJUIgv-CB6_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097630632</pqid></control><display><type>article</type><title>Low‐Interception Waveforms: To Prevent the Recognition of Spectrum Waveform Modulation via Adversarial Examples</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Tan, Jia ; Xie, Haidong ; Zhang, Xiaoying ; Ji, Nan ; Liao, Haihua ; Yu, ZuGuo ; Xiang, Xueshuang ; Liu, Naijin</creator><creatorcontrib>Tan, Jia ; Xie, Haidong ; Zhang, Xiaoying ; Ji, Nan ; Liao, Haihua ; Yu, ZuGuo ; Xiang, Xueshuang ; Liu, Naijin</creatorcontrib><description>Deep learning is applied to many complex tasks in the field of wireless communication, such as modulation recognition of spectrum waveforms, because of its convenience and efficiency. This leads to the problem of a malicious third party using a deep learning model to easily recognize the modulation format of the transmitted waveform. Some existing works address this problem directly using the concept of adversarial examples in the computer vision field without fully considering the characteristics of the waveform transmission in the physical world. Therefore, we propose two low‐interception waveforms (LIWs) generation methods, the LIW and ULIW algorithms, which can reduce the probability of the modulation being recognized by a third party without affecting the reliable communication of the friendly party. Among them, ULIW improves LIW algorithm by simulating channel noise during training cycle, and substantially reduces the perturbation magnitude while maintaining low interception accuracy. Our LIW and ULIW exhibit significant low‐interception performance in both numerical simulations and hardware experiments. Key Points Define the low‐interception question, and give the mathematical model, application scenarios, and evaluation criteria Propose the ULIW algorithm based on our LIW algorithm, which substantially reduces perturbation while maintaining low interception accuracy Verify the low‐interception performance of LIW and ULIW in both the digital and physical worlds</description><identifier>ISSN: 0048-6604</identifier><identifier>EISSN: 1944-799X</identifier><identifier>DOI: 10.1029/2022RS007486</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>adversarial attack ; Algorithms ; automatic modulation recognition ; Channel noise ; Computer vision ; Deep learning ; Interception ; low‐interception waveforms ; Modulation ; Recognition ; Task complexity ; Waveforms ; Wireless communications</subject><ispartof>Radio science, 2024-08, Vol.59 (8), p.n/a</ispartof><rights>2024. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1933-f64066dd29e8069eea29054afa1c7945a473a7170fddd2ebefbed49a3c324b513</cites><orcidid>0000-0002-4124-6221 ; 0000-0001-7794-4876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2022RS007486$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2022RS007486$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids></links><search><creatorcontrib>Tan, Jia</creatorcontrib><creatorcontrib>Xie, Haidong</creatorcontrib><creatorcontrib>Zhang, Xiaoying</creatorcontrib><creatorcontrib>Ji, Nan</creatorcontrib><creatorcontrib>Liao, Haihua</creatorcontrib><creatorcontrib>Yu, ZuGuo</creatorcontrib><creatorcontrib>Xiang, Xueshuang</creatorcontrib><creatorcontrib>Liu, Naijin</creatorcontrib><title>Low‐Interception Waveforms: To Prevent the Recognition of Spectrum Waveform Modulation via Adversarial Examples</title><title>Radio science</title><description>Deep learning is applied to many complex tasks in the field of wireless communication, such as modulation recognition of spectrum waveforms, because of its convenience and efficiency. This leads to the problem of a malicious third party using a deep learning model to easily recognize the modulation format of the transmitted waveform. Some existing works address this problem directly using the concept of adversarial examples in the computer vision field without fully considering the characteristics of the waveform transmission in the physical world. Therefore, we propose two low‐interception waveforms (LIWs) generation methods, the LIW and ULIW algorithms, which can reduce the probability of the modulation being recognized by a third party without affecting the reliable communication of the friendly party. Among them, ULIW improves LIW algorithm by simulating channel noise during training cycle, and substantially reduces the perturbation magnitude while maintaining low interception accuracy. Our LIW and ULIW exhibit significant low‐interception performance in both numerical simulations and hardware experiments. Key Points Define the low‐interception question, and give the mathematical model, application scenarios, and evaluation criteria Propose the ULIW algorithm based on our LIW algorithm, which substantially reduces perturbation while maintaining low interception accuracy Verify the low‐interception performance of LIW and ULIW in both the digital and physical worlds</description><subject>adversarial attack</subject><subject>Algorithms</subject><subject>automatic modulation recognition</subject><subject>Channel noise</subject><subject>Computer vision</subject><subject>Deep learning</subject><subject>Interception</subject><subject>low‐interception waveforms</subject><subject>Modulation</subject><subject>Recognition</subject><subject>Task complexity</subject><subject>Waveforms</subject><subject>Wireless communications</subject><issn>0048-6604</issn><issn>1944-799X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90M9OwkAQBvCN0UREbz7AJl6tzv7plvVGEJUEowGM3pqlnWpJ6dbdUuTmI_iMPokIxnjyNIf5fTPJR8gxgzMGXJ9z4Hw0BohkR-2QFtNSBpHWT7ukBSA7gVIg98mB9zMAJkMlW-R1aJef7x-DskaXYFXntqSPpsHMurm_oBNL7x02WNa0fkE6wsQ-l_lG2YyOK0xqt5j_JuitTReF2eyb3NBu2qDzxuWmoP03M68K9IdkLzOFx6Of2SYPV_1J7yYY3l0Pet1hkDAtRJApCUqlKdfYAaURDdcQSpMZlkRahkZGwkQsgixdI5xiNsVUaiMSweU0ZKJNTrZ3K2dfF-jreGYXrly_jAXoSAlQgq_V6VYlznrvMIsrl8-NW8UM4u9S47-lrjnf8mVe4OpfG48ux5yJUIgv-CB6_w</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Tan, Jia</creator><creator>Xie, Haidong</creator><creator>Zhang, Xiaoying</creator><creator>Ji, Nan</creator><creator>Liao, Haihua</creator><creator>Yu, ZuGuo</creator><creator>Xiang, Xueshuang</creator><creator>Liu, Naijin</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4124-6221</orcidid><orcidid>https://orcid.org/0000-0001-7794-4876</orcidid></search><sort><creationdate>202408</creationdate><title>Low‐Interception Waveforms: To Prevent the Recognition of Spectrum Waveform Modulation via Adversarial Examples</title><author>Tan, Jia ; Xie, Haidong ; Zhang, Xiaoying ; Ji, Nan ; Liao, Haihua ; Yu, ZuGuo ; Xiang, Xueshuang ; Liu, Naijin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1933-f64066dd29e8069eea29054afa1c7945a473a7170fddd2ebefbed49a3c324b513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adversarial attack</topic><topic>Algorithms</topic><topic>automatic modulation recognition</topic><topic>Channel noise</topic><topic>Computer vision</topic><topic>Deep learning</topic><topic>Interception</topic><topic>low‐interception waveforms</topic><topic>Modulation</topic><topic>Recognition</topic><topic>Task complexity</topic><topic>Waveforms</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Jia</creatorcontrib><creatorcontrib>Xie, Haidong</creatorcontrib><creatorcontrib>Zhang, Xiaoying</creatorcontrib><creatorcontrib>Ji, Nan</creatorcontrib><creatorcontrib>Liao, Haihua</creatorcontrib><creatorcontrib>Yu, ZuGuo</creatorcontrib><creatorcontrib>Xiang, Xueshuang</creatorcontrib><creatorcontrib>Liu, Naijin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Radio science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Jia</au><au>Xie, Haidong</au><au>Zhang, Xiaoying</au><au>Ji, Nan</au><au>Liao, Haihua</au><au>Yu, ZuGuo</au><au>Xiang, Xueshuang</au><au>Liu, Naijin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low‐Interception Waveforms: To Prevent the Recognition of Spectrum Waveform Modulation via Adversarial Examples</atitle><jtitle>Radio science</jtitle><date>2024-08</date><risdate>2024</risdate><volume>59</volume><issue>8</issue><epage>n/a</epage><issn>0048-6604</issn><eissn>1944-799X</eissn><abstract>Deep learning is applied to many complex tasks in the field of wireless communication, such as modulation recognition of spectrum waveforms, because of its convenience and efficiency. This leads to the problem of a malicious third party using a deep learning model to easily recognize the modulation format of the transmitted waveform. Some existing works address this problem directly using the concept of adversarial examples in the computer vision field without fully considering the characteristics of the waveform transmission in the physical world. Therefore, we propose two low‐interception waveforms (LIWs) generation methods, the LIW and ULIW algorithms, which can reduce the probability of the modulation being recognized by a third party without affecting the reliable communication of the friendly party. Among them, ULIW improves LIW algorithm by simulating channel noise during training cycle, and substantially reduces the perturbation magnitude while maintaining low interception accuracy. Our LIW and ULIW exhibit significant low‐interception performance in both numerical simulations and hardware experiments. Key Points Define the low‐interception question, and give the mathematical model, application scenarios, and evaluation criteria Propose the ULIW algorithm based on our LIW algorithm, which substantially reduces perturbation while maintaining low interception accuracy Verify the low‐interception performance of LIW and ULIW in both the digital and physical worlds</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2022RS007486</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4124-6221</orcidid><orcidid>https://orcid.org/0000-0001-7794-4876</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0048-6604
ispartof Radio science, 2024-08, Vol.59 (8), p.n/a
issn 0048-6604
1944-799X
language eng
recordid cdi_proquest_journals_3097630632
source Wiley-Blackwell AGU Digital Library; Wiley-Blackwell Read & Publish Collection
subjects adversarial attack
Algorithms
automatic modulation recognition
Channel noise
Computer vision
Deep learning
Interception
low‐interception waveforms
Modulation
Recognition
Task complexity
Waveforms
Wireless communications
title Low‐Interception Waveforms: To Prevent the Recognition of Spectrum Waveform Modulation via Adversarial Examples
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%E2%80%90Interception%20Waveforms:%20To%20Prevent%20the%20Recognition%20of%20Spectrum%20Waveform%20Modulation%20via%20Adversarial%20Examples&rft.jtitle=Radio%20science&rft.au=Tan,%20Jia&rft.date=2024-08&rft.volume=59&rft.issue=8&rft.epage=n/a&rft.issn=0048-6604&rft.eissn=1944-799X&rft_id=info:doi/10.1029/2022RS007486&rft_dat=%3Cproquest_cross%3E3097630632%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1933-f64066dd29e8069eea29054afa1c7945a473a7170fddd2ebefbed49a3c324b513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3097630632&rft_id=info:pmid/&rfr_iscdi=true