Loading…
Soliton solutions of the TWPA-SNAIL transmission line circuit equation under continuum approximation via the Jacobi elliptic function expansion method
In this paper, we study the travelling wave parametric amplifier-superconducting nonlinear asymmetric inductive element (TWPA-SNAIL) transmission line circuit equation and its variable coefficients form, which may describe transmission line circuits for travelling wave parametric amplifiers includin...
Saved in:
Published in: | Pramāṇa 2024-08, Vol.98 (3), Article 124 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c200t-56585a871e15f6acb15b4fb25317795225666a34643ec043004001cf043a4e243 |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | Pramāṇa |
container_volume | 98 |
creator | Liu, Bo Duan, Zhou-Bo Niu, Li-Fang |
description | In this paper, we study the travelling wave parametric amplifier-superconducting nonlinear asymmetric inductive element (TWPA-SNAIL) transmission line circuit equation and its variable coefficients form, which may describe transmission line circuits for travelling wave parametric amplifiers including superconducting nonlinear asymmetric inductive elements. We derive some exact solutions, including dark soliton, bright soliton, periodic, trigonometric function and hyperbolic function solutions using Jacobi elliptic function expansion method. The soliton solutions of this circuit equation are useful to analogue black–white hole event horizon pairs. To better describe the dynamical behaviour of these solutions, we plot three-dimensional density and two-dimensional images. By varying the parameters, we find that some parameters have an effect on the structure of the solution. In addition, for the variable coefficient equations, we present images containing trigonometric and exponential functions in the solution and obtain some satisfactory results by comparing the graphs with the coefficient functions. The results show that the Jacobi elliptic function expansion method is a remarkable, direct and desirable method for solving a class of nonlinear partial differential equations. |
doi_str_mv | 10.1007/s12043-024-02791-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3097828018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097828018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-56585a871e15f6acb15b4fb25317795225666a34643ec043004001cf043a4e243</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhgdRsFZfwFXA9WiuM9NlKV4qRYVWXIZMmrEp02Sai9QX8XlNO4KuXIQcOP__n3O-LLtE8BpBWN54hCElOcQ0vXKE8uIoG8BRSfISIXT8pz7NzrxfQ4hGlLBB9jW3rQ7WAG_bGLQ1HtgGhJUCi7eXcT5_Gk9nIDhh_EZ7n_qg1UYBqZ2MOgC1jWLvAtEslQPSmqBNjBsgus7Znd703Q8tDpmPQtpaA9W2ugtagiYaeRCoXZdG7KuNCiu7PM9OGtF6dfHzD7PXu9vF5CGfPd9PJ-NZLjGEIWcFq5ioSqQQawoha8Rq2tSYEVSWI4YxK4pCEFpQomQCBCFNl8smlYIqTMkwu-pz07bbqHzgaxudSSM5ScgqXEFUJRXuVdJZ751qeOfSae6TI8j3_HnPnyf-_MCfF8lEepNPYvOu3G_0P65vVquKJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097828018</pqid></control><display><type>article</type><title>Soliton solutions of the TWPA-SNAIL transmission line circuit equation under continuum approximation via the Jacobi elliptic function expansion method</title><source>Indian Academy of Sciences</source><source>Springer Nature</source><creator>Liu, Bo ; Duan, Zhou-Bo ; Niu, Li-Fang</creator><creatorcontrib>Liu, Bo ; Duan, Zhou-Bo ; Niu, Li-Fang</creatorcontrib><description>In this paper, we study the travelling wave parametric amplifier-superconducting nonlinear asymmetric inductive element (TWPA-SNAIL) transmission line circuit equation and its variable coefficients form, which may describe transmission line circuits for travelling wave parametric amplifiers including superconducting nonlinear asymmetric inductive elements. We derive some exact solutions, including dark soliton, bright soliton, periodic, trigonometric function and hyperbolic function solutions using Jacobi elliptic function expansion method. The soliton solutions of this circuit equation are useful to analogue black–white hole event horizon pairs. To better describe the dynamical behaviour of these solutions, we plot three-dimensional density and two-dimensional images. By varying the parameters, we find that some parameters have an effect on the structure of the solution. In addition, for the variable coefficient equations, we present images containing trigonometric and exponential functions in the solution and obtain some satisfactory results by comparing the graphs with the coefficient functions. The results show that the Jacobi elliptic function expansion method is a remarkable, direct and desirable method for solving a class of nonlinear partial differential equations.</description><identifier>ISSN: 0973-7111</identifier><identifier>ISSN: 0304-4289</identifier><identifier>EISSN: 0973-7111</identifier><identifier>DOI: 10.1007/s12043-024-02791-6</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Astronomy ; Astrophysics and Astroparticles ; Asymmetry ; Elliptic functions ; Event horizon ; Exact solutions ; Exponential functions ; Hyperbolic functions ; Mathematical analysis ; Nonlinear differential equations ; Observations and Techniques ; Parameters ; Parametric amplifiers ; Partial differential equations ; Physics ; Physics and Astronomy ; Solitary waves ; Superconductivity ; Transmission lines ; Traveling waves ; Trigonometric functions</subject><ispartof>Pramāṇa, 2024-08, Vol.98 (3), Article 124</ispartof><rights>Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-56585a871e15f6acb15b4fb25317795225666a34643ec043004001cf043a4e243</cites><orcidid>0009-0003-3789-3906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Duan, Zhou-Bo</creatorcontrib><creatorcontrib>Niu, Li-Fang</creatorcontrib><title>Soliton solutions of the TWPA-SNAIL transmission line circuit equation under continuum approximation via the Jacobi elliptic function expansion method</title><title>Pramāṇa</title><addtitle>Pramana - J Phys</addtitle><description>In this paper, we study the travelling wave parametric amplifier-superconducting nonlinear asymmetric inductive element (TWPA-SNAIL) transmission line circuit equation and its variable coefficients form, which may describe transmission line circuits for travelling wave parametric amplifiers including superconducting nonlinear asymmetric inductive elements. We derive some exact solutions, including dark soliton, bright soliton, periodic, trigonometric function and hyperbolic function solutions using Jacobi elliptic function expansion method. The soliton solutions of this circuit equation are useful to analogue black–white hole event horizon pairs. To better describe the dynamical behaviour of these solutions, we plot three-dimensional density and two-dimensional images. By varying the parameters, we find that some parameters have an effect on the structure of the solution. In addition, for the variable coefficient equations, we present images containing trigonometric and exponential functions in the solution and obtain some satisfactory results by comparing the graphs with the coefficient functions. The results show that the Jacobi elliptic function expansion method is a remarkable, direct and desirable method for solving a class of nonlinear partial differential equations.</description><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Asymmetry</subject><subject>Elliptic functions</subject><subject>Event horizon</subject><subject>Exact solutions</subject><subject>Exponential functions</subject><subject>Hyperbolic functions</subject><subject>Mathematical analysis</subject><subject>Nonlinear differential equations</subject><subject>Observations and Techniques</subject><subject>Parameters</subject><subject>Parametric amplifiers</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solitary waves</subject><subject>Superconductivity</subject><subject>Transmission lines</subject><subject>Traveling waves</subject><subject>Trigonometric functions</subject><issn>0973-7111</issn><issn>0304-4289</issn><issn>0973-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhgdRsFZfwFXA9WiuM9NlKV4qRYVWXIZMmrEp02Sai9QX8XlNO4KuXIQcOP__n3O-LLtE8BpBWN54hCElOcQ0vXKE8uIoG8BRSfISIXT8pz7NzrxfQ4hGlLBB9jW3rQ7WAG_bGLQ1HtgGhJUCi7eXcT5_Gk9nIDhh_EZ7n_qg1UYBqZ2MOgC1jWLvAtEslQPSmqBNjBsgus7Znd703Q8tDpmPQtpaA9W2ugtagiYaeRCoXZdG7KuNCiu7PM9OGtF6dfHzD7PXu9vF5CGfPd9PJ-NZLjGEIWcFq5ioSqQQawoha8Rq2tSYEVSWI4YxK4pCEFpQomQCBCFNl8smlYIqTMkwu-pz07bbqHzgaxudSSM5ScgqXEFUJRXuVdJZ751qeOfSae6TI8j3_HnPnyf-_MCfF8lEepNPYvOu3G_0P65vVquKJA</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>Liu, Bo</creator><creator>Duan, Zhou-Bo</creator><creator>Niu, Li-Fang</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0003-3789-3906</orcidid></search><sort><creationdate>20240828</creationdate><title>Soliton solutions of the TWPA-SNAIL transmission line circuit equation under continuum approximation via the Jacobi elliptic function expansion method</title><author>Liu, Bo ; Duan, Zhou-Bo ; Niu, Li-Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-56585a871e15f6acb15b4fb25317795225666a34643ec043004001cf043a4e243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Asymmetry</topic><topic>Elliptic functions</topic><topic>Event horizon</topic><topic>Exact solutions</topic><topic>Exponential functions</topic><topic>Hyperbolic functions</topic><topic>Mathematical analysis</topic><topic>Nonlinear differential equations</topic><topic>Observations and Techniques</topic><topic>Parameters</topic><topic>Parametric amplifiers</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solitary waves</topic><topic>Superconductivity</topic><topic>Transmission lines</topic><topic>Traveling waves</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Duan, Zhou-Bo</creatorcontrib><creatorcontrib>Niu, Li-Fang</creatorcontrib><collection>CrossRef</collection><jtitle>Pramāṇa</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Bo</au><au>Duan, Zhou-Bo</au><au>Niu, Li-Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soliton solutions of the TWPA-SNAIL transmission line circuit equation under continuum approximation via the Jacobi elliptic function expansion method</atitle><jtitle>Pramāṇa</jtitle><stitle>Pramana - J Phys</stitle><date>2024-08-28</date><risdate>2024</risdate><volume>98</volume><issue>3</issue><artnum>124</artnum><issn>0973-7111</issn><issn>0304-4289</issn><eissn>0973-7111</eissn><abstract>In this paper, we study the travelling wave parametric amplifier-superconducting nonlinear asymmetric inductive element (TWPA-SNAIL) transmission line circuit equation and its variable coefficients form, which may describe transmission line circuits for travelling wave parametric amplifiers including superconducting nonlinear asymmetric inductive elements. We derive some exact solutions, including dark soliton, bright soliton, periodic, trigonometric function and hyperbolic function solutions using Jacobi elliptic function expansion method. The soliton solutions of this circuit equation are useful to analogue black–white hole event horizon pairs. To better describe the dynamical behaviour of these solutions, we plot three-dimensional density and two-dimensional images. By varying the parameters, we find that some parameters have an effect on the structure of the solution. In addition, for the variable coefficient equations, we present images containing trigonometric and exponential functions in the solution and obtain some satisfactory results by comparing the graphs with the coefficient functions. The results show that the Jacobi elliptic function expansion method is a remarkable, direct and desirable method for solving a class of nonlinear partial differential equations.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12043-024-02791-6</doi><orcidid>https://orcid.org/0009-0003-3789-3906</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0973-7111 |
ispartof | Pramāṇa, 2024-08, Vol.98 (3), Article 124 |
issn | 0973-7111 0304-4289 0973-7111 |
language | eng |
recordid | cdi_proquest_journals_3097828018 |
source | Indian Academy of Sciences; Springer Nature |
subjects | Astronomy Astrophysics and Astroparticles Asymmetry Elliptic functions Event horizon Exact solutions Exponential functions Hyperbolic functions Mathematical analysis Nonlinear differential equations Observations and Techniques Parameters Parametric amplifiers Partial differential equations Physics Physics and Astronomy Solitary waves Superconductivity Transmission lines Traveling waves Trigonometric functions |
title | Soliton solutions of the TWPA-SNAIL transmission line circuit equation under continuum approximation via the Jacobi elliptic function expansion method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A16%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soliton%20solutions%20of%20the%20TWPA-SNAIL%20transmission%20line%20circuit%20equation%20under%20continuum%20approximation%20via%20the%20Jacobi%20elliptic%20function%20expansion%20method&rft.jtitle=Prama%CC%84n%CC%A3a&rft.au=Liu,%20Bo&rft.date=2024-08-28&rft.volume=98&rft.issue=3&rft.artnum=124&rft.issn=0973-7111&rft.eissn=0973-7111&rft_id=info:doi/10.1007/s12043-024-02791-6&rft_dat=%3Cproquest_cross%3E3097828018%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-56585a871e15f6acb15b4fb25317795225666a34643ec043004001cf043a4e243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3097828018&rft_id=info:pmid/&rfr_iscdi=true |