Loading…

Soliton solutions of the TWPA-SNAIL transmission line circuit equation under continuum approximation via the Jacobi elliptic function expansion method

In this paper, we study the travelling wave parametric amplifier-superconducting nonlinear asymmetric inductive element (TWPA-SNAIL) transmission line circuit equation and its variable coefficients form, which may describe transmission line circuits for travelling wave parametric amplifiers includin...

Full description

Saved in:
Bibliographic Details
Published in:Pramāṇa 2024-08, Vol.98 (3), Article 124
Main Authors: Liu, Bo, Duan, Zhou-Bo, Niu, Li-Fang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-56585a871e15f6acb15b4fb25317795225666a34643ec043004001cf043a4e243
container_end_page
container_issue 3
container_start_page
container_title Pramāṇa
container_volume 98
creator Liu, Bo
Duan, Zhou-Bo
Niu, Li-Fang
description In this paper, we study the travelling wave parametric amplifier-superconducting nonlinear asymmetric inductive element (TWPA-SNAIL) transmission line circuit equation and its variable coefficients form, which may describe transmission line circuits for travelling wave parametric amplifiers including superconducting nonlinear asymmetric inductive elements. We derive some exact solutions, including dark soliton, bright soliton, periodic, trigonometric function and hyperbolic function solutions using Jacobi elliptic function expansion method. The soliton solutions of this circuit equation are useful to analogue black–white hole event horizon pairs. To better describe the dynamical behaviour of these solutions, we plot three-dimensional density and two-dimensional images. By varying the parameters, we find that some parameters have an effect on the structure of the solution. In addition, for the variable coefficient equations, we present images containing trigonometric and exponential functions in the solution and obtain some satisfactory results by comparing the graphs with the coefficient functions. The results show that the Jacobi elliptic function expansion method is a remarkable, direct and desirable method for solving a class of nonlinear partial differential equations.
doi_str_mv 10.1007/s12043-024-02791-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3097828018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097828018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-56585a871e15f6acb15b4fb25317795225666a34643ec043004001cf043a4e243</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhgdRsFZfwFXA9WiuM9NlKV4qRYVWXIZMmrEp02Sai9QX8XlNO4KuXIQcOP__n3O-LLtE8BpBWN54hCElOcQ0vXKE8uIoG8BRSfISIXT8pz7NzrxfQ4hGlLBB9jW3rQ7WAG_bGLQ1HtgGhJUCi7eXcT5_Gk9nIDhh_EZ7n_qg1UYBqZ2MOgC1jWLvAtEslQPSmqBNjBsgus7Znd703Q8tDpmPQtpaA9W2ugtagiYaeRCoXZdG7KuNCiu7PM9OGtF6dfHzD7PXu9vF5CGfPd9PJ-NZLjGEIWcFq5ioSqQQawoha8Rq2tSYEVSWI4YxK4pCEFpQomQCBCFNl8smlYIqTMkwu-pz07bbqHzgaxudSSM5ScgqXEFUJRXuVdJZ751qeOfSae6TI8j3_HnPnyf-_MCfF8lEepNPYvOu3G_0P65vVquKJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097828018</pqid></control><display><type>article</type><title>Soliton solutions of the TWPA-SNAIL transmission line circuit equation under continuum approximation via the Jacobi elliptic function expansion method</title><source>Indian Academy of Sciences</source><source>Springer Nature</source><creator>Liu, Bo ; Duan, Zhou-Bo ; Niu, Li-Fang</creator><creatorcontrib>Liu, Bo ; Duan, Zhou-Bo ; Niu, Li-Fang</creatorcontrib><description>In this paper, we study the travelling wave parametric amplifier-superconducting nonlinear asymmetric inductive element (TWPA-SNAIL) transmission line circuit equation and its variable coefficients form, which may describe transmission line circuits for travelling wave parametric amplifiers including superconducting nonlinear asymmetric inductive elements. We derive some exact solutions, including dark soliton, bright soliton, periodic, trigonometric function and hyperbolic function solutions using Jacobi elliptic function expansion method. The soliton solutions of this circuit equation are useful to analogue black–white hole event horizon pairs. To better describe the dynamical behaviour of these solutions, we plot three-dimensional density and two-dimensional images. By varying the parameters, we find that some parameters have an effect on the structure of the solution. In addition, for the variable coefficient equations, we present images containing trigonometric and exponential functions in the solution and obtain some satisfactory results by comparing the graphs with the coefficient functions. The results show that the Jacobi elliptic function expansion method is a remarkable, direct and desirable method for solving a class of nonlinear partial differential equations.</description><identifier>ISSN: 0973-7111</identifier><identifier>ISSN: 0304-4289</identifier><identifier>EISSN: 0973-7111</identifier><identifier>DOI: 10.1007/s12043-024-02791-6</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Astronomy ; Astrophysics and Astroparticles ; Asymmetry ; Elliptic functions ; Event horizon ; Exact solutions ; Exponential functions ; Hyperbolic functions ; Mathematical analysis ; Nonlinear differential equations ; Observations and Techniques ; Parameters ; Parametric amplifiers ; Partial differential equations ; Physics ; Physics and Astronomy ; Solitary waves ; Superconductivity ; Transmission lines ; Traveling waves ; Trigonometric functions</subject><ispartof>Pramāṇa, 2024-08, Vol.98 (3), Article 124</ispartof><rights>Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-56585a871e15f6acb15b4fb25317795225666a34643ec043004001cf043a4e243</cites><orcidid>0009-0003-3789-3906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Duan, Zhou-Bo</creatorcontrib><creatorcontrib>Niu, Li-Fang</creatorcontrib><title>Soliton solutions of the TWPA-SNAIL transmission line circuit equation under continuum approximation via the Jacobi elliptic function expansion method</title><title>Pramāṇa</title><addtitle>Pramana - J Phys</addtitle><description>In this paper, we study the travelling wave parametric amplifier-superconducting nonlinear asymmetric inductive element (TWPA-SNAIL) transmission line circuit equation and its variable coefficients form, which may describe transmission line circuits for travelling wave parametric amplifiers including superconducting nonlinear asymmetric inductive elements. We derive some exact solutions, including dark soliton, bright soliton, periodic, trigonometric function and hyperbolic function solutions using Jacobi elliptic function expansion method. The soliton solutions of this circuit equation are useful to analogue black–white hole event horizon pairs. To better describe the dynamical behaviour of these solutions, we plot three-dimensional density and two-dimensional images. By varying the parameters, we find that some parameters have an effect on the structure of the solution. In addition, for the variable coefficient equations, we present images containing trigonometric and exponential functions in the solution and obtain some satisfactory results by comparing the graphs with the coefficient functions. The results show that the Jacobi elliptic function expansion method is a remarkable, direct and desirable method for solving a class of nonlinear partial differential equations.</description><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Asymmetry</subject><subject>Elliptic functions</subject><subject>Event horizon</subject><subject>Exact solutions</subject><subject>Exponential functions</subject><subject>Hyperbolic functions</subject><subject>Mathematical analysis</subject><subject>Nonlinear differential equations</subject><subject>Observations and Techniques</subject><subject>Parameters</subject><subject>Parametric amplifiers</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solitary waves</subject><subject>Superconductivity</subject><subject>Transmission lines</subject><subject>Traveling waves</subject><subject>Trigonometric functions</subject><issn>0973-7111</issn><issn>0304-4289</issn><issn>0973-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhgdRsFZfwFXA9WiuM9NlKV4qRYVWXIZMmrEp02Sai9QX8XlNO4KuXIQcOP__n3O-LLtE8BpBWN54hCElOcQ0vXKE8uIoG8BRSfISIXT8pz7NzrxfQ4hGlLBB9jW3rQ7WAG_bGLQ1HtgGhJUCi7eXcT5_Gk9nIDhh_EZ7n_qg1UYBqZ2MOgC1jWLvAtEslQPSmqBNjBsgus7Znd703Q8tDpmPQtpaA9W2ugtagiYaeRCoXZdG7KuNCiu7PM9OGtF6dfHzD7PXu9vF5CGfPd9PJ-NZLjGEIWcFq5ioSqQQawoha8Rq2tSYEVSWI4YxK4pCEFpQomQCBCFNl8smlYIqTMkwu-pz07bbqHzgaxudSSM5ScgqXEFUJRXuVdJZ751qeOfSae6TI8j3_HnPnyf-_MCfF8lEepNPYvOu3G_0P65vVquKJA</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>Liu, Bo</creator><creator>Duan, Zhou-Bo</creator><creator>Niu, Li-Fang</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0003-3789-3906</orcidid></search><sort><creationdate>20240828</creationdate><title>Soliton solutions of the TWPA-SNAIL transmission line circuit equation under continuum approximation via the Jacobi elliptic function expansion method</title><author>Liu, Bo ; Duan, Zhou-Bo ; Niu, Li-Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-56585a871e15f6acb15b4fb25317795225666a34643ec043004001cf043a4e243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Asymmetry</topic><topic>Elliptic functions</topic><topic>Event horizon</topic><topic>Exact solutions</topic><topic>Exponential functions</topic><topic>Hyperbolic functions</topic><topic>Mathematical analysis</topic><topic>Nonlinear differential equations</topic><topic>Observations and Techniques</topic><topic>Parameters</topic><topic>Parametric amplifiers</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solitary waves</topic><topic>Superconductivity</topic><topic>Transmission lines</topic><topic>Traveling waves</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Duan, Zhou-Bo</creatorcontrib><creatorcontrib>Niu, Li-Fang</creatorcontrib><collection>CrossRef</collection><jtitle>Pramāṇa</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Bo</au><au>Duan, Zhou-Bo</au><au>Niu, Li-Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soliton solutions of the TWPA-SNAIL transmission line circuit equation under continuum approximation via the Jacobi elliptic function expansion method</atitle><jtitle>Pramāṇa</jtitle><stitle>Pramana - J Phys</stitle><date>2024-08-28</date><risdate>2024</risdate><volume>98</volume><issue>3</issue><artnum>124</artnum><issn>0973-7111</issn><issn>0304-4289</issn><eissn>0973-7111</eissn><abstract>In this paper, we study the travelling wave parametric amplifier-superconducting nonlinear asymmetric inductive element (TWPA-SNAIL) transmission line circuit equation and its variable coefficients form, which may describe transmission line circuits for travelling wave parametric amplifiers including superconducting nonlinear asymmetric inductive elements. We derive some exact solutions, including dark soliton, bright soliton, periodic, trigonometric function and hyperbolic function solutions using Jacobi elliptic function expansion method. The soliton solutions of this circuit equation are useful to analogue black–white hole event horizon pairs. To better describe the dynamical behaviour of these solutions, we plot three-dimensional density and two-dimensional images. By varying the parameters, we find that some parameters have an effect on the structure of the solution. In addition, for the variable coefficient equations, we present images containing trigonometric and exponential functions in the solution and obtain some satisfactory results by comparing the graphs with the coefficient functions. The results show that the Jacobi elliptic function expansion method is a remarkable, direct and desirable method for solving a class of nonlinear partial differential equations.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12043-024-02791-6</doi><orcidid>https://orcid.org/0009-0003-3789-3906</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0973-7111
ispartof Pramāṇa, 2024-08, Vol.98 (3), Article 124
issn 0973-7111
0304-4289
0973-7111
language eng
recordid cdi_proquest_journals_3097828018
source Indian Academy of Sciences; Springer Nature
subjects Astronomy
Astrophysics and Astroparticles
Asymmetry
Elliptic functions
Event horizon
Exact solutions
Exponential functions
Hyperbolic functions
Mathematical analysis
Nonlinear differential equations
Observations and Techniques
Parameters
Parametric amplifiers
Partial differential equations
Physics
Physics and Astronomy
Solitary waves
Superconductivity
Transmission lines
Traveling waves
Trigonometric functions
title Soliton solutions of the TWPA-SNAIL transmission line circuit equation under continuum approximation via the Jacobi elliptic function expansion method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A16%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soliton%20solutions%20of%20the%20TWPA-SNAIL%20transmission%20line%20circuit%20equation%20under%20continuum%20approximation%20via%20the%20Jacobi%20elliptic%20function%20expansion%20method&rft.jtitle=Prama%CC%84n%CC%A3a&rft.au=Liu,%20Bo&rft.date=2024-08-28&rft.volume=98&rft.issue=3&rft.artnum=124&rft.issn=0973-7111&rft.eissn=0973-7111&rft_id=info:doi/10.1007/s12043-024-02791-6&rft_dat=%3Cproquest_cross%3E3097828018%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-56585a871e15f6acb15b4fb25317795225666a34643ec043004001cf043a4e243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3097828018&rft_id=info:pmid/&rfr_iscdi=true