Loading…

Ni-MoO2 Composite Coatings Electrodeposited at Porous Ni Substrate as Efficient Alkaline Water Splitting Cathodes

To obtain highly efficient yet easily produced water-splitting cathodes, Ni-MoO2 composite coatings were electrodeposited at a Ni foam substrate with an open-pore structure, pore size of 450 µm, in a Watts-type bath. The concentration of MoO2 particles (about 100 nm) was varied, while the intensive...

Full description

Saved in:
Bibliographic Details
Published in:Coatings (Basel) 2024-08, Vol.14 (8), p.1026
Main Authors: Petričević, Aleksandar, Gojgić, Jelena, Bernäcker, Christian I., Rauscher, Thomas, Bele, Marjan, Smiljanić, Milutin, Hodnik, Nejc, Elezović, Nevenka, Jović, Vladimir D., Krstajić Pajić, Mila N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c196t-2f0346887e5e64764fa698f26b03233b524f13200520a8504a73f8e51d03ed5b3
container_end_page
container_issue 8
container_start_page 1026
container_title Coatings (Basel)
container_volume 14
creator Petričević, Aleksandar
Gojgić, Jelena
Bernäcker, Christian I.
Rauscher, Thomas
Bele, Marjan
Smiljanić, Milutin
Hodnik, Nejc
Elezović, Nevenka
Jović, Vladimir D.
Krstajić Pajić, Mila N.
description To obtain highly efficient yet easily produced water-splitting cathodes, Ni-MoO2 composite coatings were electrodeposited at a Ni foam substrate with an open-pore structure, pore size of 450 µm, in a Watts-type bath. The concentration of MoO2 particles (about 100 nm) was varied, while the intensive mixing of the solution was provided by air bubbling with 0.5 L min−1. Electrodeposition was performed at different constant current densities at room temperature. The morphology and composition of the coatings were investigated by SEM and EDS. The hydrogen evolution reaction (HER) was tested in KOH of different concentrations, at several temperatures, in a three-electrode H-cell by recording polarization curves and EIS measurements. The lowest achieved HER overpotential was −158 mV at −0.5 A cm−2. Up-scaled samples, 3 × 3.3 cm2, were tested in a single zero-gap cell showing decreasing cell voltage (from 2.18 V to 2.11 V) at 0.5 A cm−2 over 5 h in 30% KOH at 70 °C with electrolyte flow rate of 58 mL min−1. Compared to pure Ni foams used as both cathode and anode under the same conditions, the cell voltage is decreased by 200 mV, showing improved electrode performance.
doi_str_mv 10.3390/coatings14081026
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3097894145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097894145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-2f0346887e5e64764fa698f26b03233b524f13200520a8504a73f8e51d03ed5b3</originalsourceid><addsrcrecordid>eNpdkN1LwzAUxYMoOObefQz4XM1X0-RxlPkBcxOm-FjSNtHMrumS9MH_3oz6IN6Xe-Cc-7twALjG6JZSie4ap6LtPwJmSGBE-BmYEVTIjDNMzv_oS7AIYY_SSEwFljNw3Njs2W0JLN1hcMFGndQEg6tON9G7Vk9GC1WEL867McCNhbuxDtGrdKBS1BjbWN1HuOy-VGd7Dd-T5eFu6Gw84WCp4mdihStwYVQX9OJ3z8Hb_eq1fMzW24encrnOGix5zIhBlHEhCp1rzgrOjOJSGMJrRAmldU6YwZQglBOkRI6YKqgROsctorrNazoHNxN38O446hCrvRt9n15WFMlCSIZZnlJoSjXeheC1qQZvD8p_VxhVp26r_93SH7l_bbo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097894145</pqid></control><display><type>article</type><title>Ni-MoO2 Composite Coatings Electrodeposited at Porous Ni Substrate as Efficient Alkaline Water Splitting Cathodes</title><source>Publicly Available Content Database</source><creator>Petričević, Aleksandar ; Gojgić, Jelena ; Bernäcker, Christian I. ; Rauscher, Thomas ; Bele, Marjan ; Smiljanić, Milutin ; Hodnik, Nejc ; Elezović, Nevenka ; Jović, Vladimir D. ; Krstajić Pajić, Mila N.</creator><creatorcontrib>Petričević, Aleksandar ; Gojgić, Jelena ; Bernäcker, Christian I. ; Rauscher, Thomas ; Bele, Marjan ; Smiljanić, Milutin ; Hodnik, Nejc ; Elezović, Nevenka ; Jović, Vladimir D. ; Krstajić Pajić, Mila N.</creatorcontrib><description>To obtain highly efficient yet easily produced water-splitting cathodes, Ni-MoO2 composite coatings were electrodeposited at a Ni foam substrate with an open-pore structure, pore size of 450 µm, in a Watts-type bath. The concentration of MoO2 particles (about 100 nm) was varied, while the intensive mixing of the solution was provided by air bubbling with 0.5 L min−1. Electrodeposition was performed at different constant current densities at room temperature. The morphology and composition of the coatings were investigated by SEM and EDS. The hydrogen evolution reaction (HER) was tested in KOH of different concentrations, at several temperatures, in a three-electrode H-cell by recording polarization curves and EIS measurements. The lowest achieved HER overpotential was −158 mV at −0.5 A cm−2. Up-scaled samples, 3 × 3.3 cm2, were tested in a single zero-gap cell showing decreasing cell voltage (from 2.18 V to 2.11 V) at 0.5 A cm−2 over 5 h in 30% KOH at 70 °C with electrolyte flow rate of 58 mL min−1. Compared to pure Ni foams used as both cathode and anode under the same conditions, the cell voltage is decreased by 200 mV, showing improved electrode performance.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings14081026</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cathodes ; Coatings ; Electric potential ; Electrode polarization ; Electrodeposition ; Electrodes ; Electrolytes ; Green hydrogen ; Hydrogen evolution reactions ; Hydrogen production ; Laboratories ; Metal foams ; Microscopy ; Molybdenum ; Morphology ; Nanoparticles ; Nickel ; Pore size ; Rheology ; Room temperature ; Substrates ; Ultrasonic imaging ; Voltage ; Water splitting</subject><ispartof>Coatings (Basel), 2024-08, Vol.14 (8), p.1026</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-2f0346887e5e64764fa698f26b03233b524f13200520a8504a73f8e51d03ed5b3</cites><orcidid>0000-0002-4911-5349 ; 0000-0002-7113-9769 ; 0000-0002-8860-4890 ; 0000-0002-1560-673X ; 0000-0001-5954-3569 ; 0000-0002-4087-6766 ; 0000-0001-6046-9327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3097894145/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3097894145?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Petričević, Aleksandar</creatorcontrib><creatorcontrib>Gojgić, Jelena</creatorcontrib><creatorcontrib>Bernäcker, Christian I.</creatorcontrib><creatorcontrib>Rauscher, Thomas</creatorcontrib><creatorcontrib>Bele, Marjan</creatorcontrib><creatorcontrib>Smiljanić, Milutin</creatorcontrib><creatorcontrib>Hodnik, Nejc</creatorcontrib><creatorcontrib>Elezović, Nevenka</creatorcontrib><creatorcontrib>Jović, Vladimir D.</creatorcontrib><creatorcontrib>Krstajić Pajić, Mila N.</creatorcontrib><title>Ni-MoO2 Composite Coatings Electrodeposited at Porous Ni Substrate as Efficient Alkaline Water Splitting Cathodes</title><title>Coatings (Basel)</title><description>To obtain highly efficient yet easily produced water-splitting cathodes, Ni-MoO2 composite coatings were electrodeposited at a Ni foam substrate with an open-pore structure, pore size of 450 µm, in a Watts-type bath. The concentration of MoO2 particles (about 100 nm) was varied, while the intensive mixing of the solution was provided by air bubbling with 0.5 L min−1. Electrodeposition was performed at different constant current densities at room temperature. The morphology and composition of the coatings were investigated by SEM and EDS. The hydrogen evolution reaction (HER) was tested in KOH of different concentrations, at several temperatures, in a three-electrode H-cell by recording polarization curves and EIS measurements. The lowest achieved HER overpotential was −158 mV at −0.5 A cm−2. Up-scaled samples, 3 × 3.3 cm2, were tested in a single zero-gap cell showing decreasing cell voltage (from 2.18 V to 2.11 V) at 0.5 A cm−2 over 5 h in 30% KOH at 70 °C with electrolyte flow rate of 58 mL min−1. Compared to pure Ni foams used as both cathode and anode under the same conditions, the cell voltage is decreased by 200 mV, showing improved electrode performance.</description><subject>Cathodes</subject><subject>Coatings</subject><subject>Electric potential</subject><subject>Electrode polarization</subject><subject>Electrodeposition</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Green hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Laboratories</subject><subject>Metal foams</subject><subject>Microscopy</subject><subject>Molybdenum</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Pore size</subject><subject>Rheology</subject><subject>Room temperature</subject><subject>Substrates</subject><subject>Ultrasonic imaging</subject><subject>Voltage</subject><subject>Water splitting</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkN1LwzAUxYMoOObefQz4XM1X0-RxlPkBcxOm-FjSNtHMrumS9MH_3oz6IN6Xe-Cc-7twALjG6JZSie4ap6LtPwJmSGBE-BmYEVTIjDNMzv_oS7AIYY_SSEwFljNw3Njs2W0JLN1hcMFGndQEg6tON9G7Vk9GC1WEL867McCNhbuxDtGrdKBS1BjbWN1HuOy-VGd7Dd-T5eFu6Gw84WCp4mdihStwYVQX9OJ3z8Hb_eq1fMzW24encrnOGix5zIhBlHEhCp1rzgrOjOJSGMJrRAmldU6YwZQglBOkRI6YKqgROsctorrNazoHNxN38O446hCrvRt9n15WFMlCSIZZnlJoSjXeheC1qQZvD8p_VxhVp26r_93SH7l_bbo</recordid><startdate>20240813</startdate><enddate>20240813</enddate><creator>Petričević, Aleksandar</creator><creator>Gojgić, Jelena</creator><creator>Bernäcker, Christian I.</creator><creator>Rauscher, Thomas</creator><creator>Bele, Marjan</creator><creator>Smiljanić, Milutin</creator><creator>Hodnik, Nejc</creator><creator>Elezović, Nevenka</creator><creator>Jović, Vladimir D.</creator><creator>Krstajić Pajić, Mila N.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4911-5349</orcidid><orcidid>https://orcid.org/0000-0002-7113-9769</orcidid><orcidid>https://orcid.org/0000-0002-8860-4890</orcidid><orcidid>https://orcid.org/0000-0002-1560-673X</orcidid><orcidid>https://orcid.org/0000-0001-5954-3569</orcidid><orcidid>https://orcid.org/0000-0002-4087-6766</orcidid><orcidid>https://orcid.org/0000-0001-6046-9327</orcidid></search><sort><creationdate>20240813</creationdate><title>Ni-MoO2 Composite Coatings Electrodeposited at Porous Ni Substrate as Efficient Alkaline Water Splitting Cathodes</title><author>Petričević, Aleksandar ; Gojgić, Jelena ; Bernäcker, Christian I. ; Rauscher, Thomas ; Bele, Marjan ; Smiljanić, Milutin ; Hodnik, Nejc ; Elezović, Nevenka ; Jović, Vladimir D. ; Krstajić Pajić, Mila N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-2f0346887e5e64764fa698f26b03233b524f13200520a8504a73f8e51d03ed5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cathodes</topic><topic>Coatings</topic><topic>Electric potential</topic><topic>Electrode polarization</topic><topic>Electrodeposition</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Green hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Laboratories</topic><topic>Metal foams</topic><topic>Microscopy</topic><topic>Molybdenum</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Pore size</topic><topic>Rheology</topic><topic>Room temperature</topic><topic>Substrates</topic><topic>Ultrasonic imaging</topic><topic>Voltage</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petričević, Aleksandar</creatorcontrib><creatorcontrib>Gojgić, Jelena</creatorcontrib><creatorcontrib>Bernäcker, Christian I.</creatorcontrib><creatorcontrib>Rauscher, Thomas</creatorcontrib><creatorcontrib>Bele, Marjan</creatorcontrib><creatorcontrib>Smiljanić, Milutin</creatorcontrib><creatorcontrib>Hodnik, Nejc</creatorcontrib><creatorcontrib>Elezović, Nevenka</creatorcontrib><creatorcontrib>Jović, Vladimir D.</creatorcontrib><creatorcontrib>Krstajić Pajić, Mila N.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petričević, Aleksandar</au><au>Gojgić, Jelena</au><au>Bernäcker, Christian I.</au><au>Rauscher, Thomas</au><au>Bele, Marjan</au><au>Smiljanić, Milutin</au><au>Hodnik, Nejc</au><au>Elezović, Nevenka</au><au>Jović, Vladimir D.</au><au>Krstajić Pajić, Mila N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ni-MoO2 Composite Coatings Electrodeposited at Porous Ni Substrate as Efficient Alkaline Water Splitting Cathodes</atitle><jtitle>Coatings (Basel)</jtitle><date>2024-08-13</date><risdate>2024</risdate><volume>14</volume><issue>8</issue><spage>1026</spage><pages>1026-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>To obtain highly efficient yet easily produced water-splitting cathodes, Ni-MoO2 composite coatings were electrodeposited at a Ni foam substrate with an open-pore structure, pore size of 450 µm, in a Watts-type bath. The concentration of MoO2 particles (about 100 nm) was varied, while the intensive mixing of the solution was provided by air bubbling with 0.5 L min−1. Electrodeposition was performed at different constant current densities at room temperature. The morphology and composition of the coatings were investigated by SEM and EDS. The hydrogen evolution reaction (HER) was tested in KOH of different concentrations, at several temperatures, in a three-electrode H-cell by recording polarization curves and EIS measurements. The lowest achieved HER overpotential was −158 mV at −0.5 A cm−2. Up-scaled samples, 3 × 3.3 cm2, were tested in a single zero-gap cell showing decreasing cell voltage (from 2.18 V to 2.11 V) at 0.5 A cm−2 over 5 h in 30% KOH at 70 °C with electrolyte flow rate of 58 mL min−1. Compared to pure Ni foams used as both cathode and anode under the same conditions, the cell voltage is decreased by 200 mV, showing improved electrode performance.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings14081026</doi><orcidid>https://orcid.org/0000-0002-4911-5349</orcidid><orcidid>https://orcid.org/0000-0002-7113-9769</orcidid><orcidid>https://orcid.org/0000-0002-8860-4890</orcidid><orcidid>https://orcid.org/0000-0002-1560-673X</orcidid><orcidid>https://orcid.org/0000-0001-5954-3569</orcidid><orcidid>https://orcid.org/0000-0002-4087-6766</orcidid><orcidid>https://orcid.org/0000-0001-6046-9327</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6412
ispartof Coatings (Basel), 2024-08, Vol.14 (8), p.1026
issn 2079-6412
2079-6412
language eng
recordid cdi_proquest_journals_3097894145
source Publicly Available Content Database
subjects Cathodes
Coatings
Electric potential
Electrode polarization
Electrodeposition
Electrodes
Electrolytes
Green hydrogen
Hydrogen evolution reactions
Hydrogen production
Laboratories
Metal foams
Microscopy
Molybdenum
Morphology
Nanoparticles
Nickel
Pore size
Rheology
Room temperature
Substrates
Ultrasonic imaging
Voltage
Water splitting
title Ni-MoO2 Composite Coatings Electrodeposited at Porous Ni Substrate as Efficient Alkaline Water Splitting Cathodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A30%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ni-MoO2%20Composite%20Coatings%20Electrodeposited%20at%20Porous%20Ni%20Substrate%20as%20Efficient%20Alkaline%20Water%20Splitting%20Cathodes&rft.jtitle=Coatings%20(Basel)&rft.au=Petri%C4%8Devi%C4%87,%20Aleksandar&rft.date=2024-08-13&rft.volume=14&rft.issue=8&rft.spage=1026&rft.pages=1026-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings14081026&rft_dat=%3Cproquest_cross%3E3097894145%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c196t-2f0346887e5e64764fa698f26b03233b524f13200520a8504a73f8e51d03ed5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3097894145&rft_id=info:pmid/&rfr_iscdi=true