Loading…
Ultra-Low-Complexity, Non-Linear Processing for MU-MIMO Systems
Non-linear detection schemes can substantially improve the achievable throughput and connectivity capabilities of uplink MU-MIMO systems that employ linear detection. However, the complexity requirements of existing non-linear soft detectors that provide substantial gains compared to linear ones are...
Saved in:
Published in: | arXiv.org 2024-09 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jayawardena, Chathura Nikitopoulos, Konstantinos |
description | Non-linear detection schemes can substantially improve the achievable throughput and connectivity capabilities of uplink MU-MIMO systems that employ linear detection. However, the complexity requirements of existing non-linear soft detectors that provide substantial gains compared to linear ones are at least an order of magnitude more complex, making their adoption challenging. In particular, joint soft information computation involves solving multiple vector minimization problems, each with a complexity that scales exponentially with the number of users. This work introduces a novel ultra-low-complexity, non-linear detection scheme that performs joint Detection and Approximate Reliability Estimation (DARE). For the first time, DARE can substantially improve the achievable throughput (e.g., 40%) with less than 2x the complexity of linear MMSE, making non-linear processing extremely practical. To enable this, DARE includes a novel procedure to approximate the reliability of the received bits based on the region of the received observable that can efficiently approach the accurately calculated soft detection performance. In addition, we show that DARE can achieve a better throughput than linear detection when using just half the base station antennas, resulting in substantial power savings (e.g., 500 W). Consequently, DARE is a very strong candidate for future power-efficient MU-MIMO developments, even in the case of software-based implementations, as in the case of emerging Open-RAN systems. Furthermore, DARE can achieve the throughput of the state-of-the-art non-linear detectors with complexity requirements that are orders of magnitude lower. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3097954643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097954643</sourcerecordid><originalsourceid>FETCH-proquest_journals_30979546433</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwD80pKUrU9ckv13XOzy3ISa3ILKnUUfDLz9P1ycxLTSxSCCjKT04tLs7MS1dIyy9S8A3V9fX09VcIriwuSc0t5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGMDS3NLUxMzE2Nj4lQBAIuHN8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097954643</pqid></control><display><type>article</type><title>Ultra-Low-Complexity, Non-Linear Processing for MU-MIMO Systems</title><source>Publicly Available Content Database</source><creator>Jayawardena, Chathura ; Nikitopoulos, Konstantinos</creator><creatorcontrib>Jayawardena, Chathura ; Nikitopoulos, Konstantinos</creatorcontrib><description>Non-linear detection schemes can substantially improve the achievable throughput and connectivity capabilities of uplink MU-MIMO systems that employ linear detection. However, the complexity requirements of existing non-linear soft detectors that provide substantial gains compared to linear ones are at least an order of magnitude more complex, making their adoption challenging. In particular, joint soft information computation involves solving multiple vector minimization problems, each with a complexity that scales exponentially with the number of users. This work introduces a novel ultra-low-complexity, non-linear detection scheme that performs joint Detection and Approximate Reliability Estimation (DARE). For the first time, DARE can substantially improve the achievable throughput (e.g., 40%) with less than 2x the complexity of linear MMSE, making non-linear processing extremely practical. To enable this, DARE includes a novel procedure to approximate the reliability of the received bits based on the region of the received observable that can efficiently approach the accurately calculated soft detection performance. In addition, we show that DARE can achieve a better throughput than linear detection when using just half the base station antennas, resulting in substantial power savings (e.g., 500 W). Consequently, DARE is a very strong candidate for future power-efficient MU-MIMO developments, even in the case of software-based implementations, as in the case of emerging Open-RAN systems. Furthermore, DARE can achieve the throughput of the state-of-the-art non-linear detectors with complexity requirements that are orders of magnitude lower.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Complexity ; Detectors ; MIMO communication ; Nonlinear systems ; Reliability</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3097954643?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Jayawardena, Chathura</creatorcontrib><creatorcontrib>Nikitopoulos, Konstantinos</creatorcontrib><title>Ultra-Low-Complexity, Non-Linear Processing for MU-MIMO Systems</title><title>arXiv.org</title><description>Non-linear detection schemes can substantially improve the achievable throughput and connectivity capabilities of uplink MU-MIMO systems that employ linear detection. However, the complexity requirements of existing non-linear soft detectors that provide substantial gains compared to linear ones are at least an order of magnitude more complex, making their adoption challenging. In particular, joint soft information computation involves solving multiple vector minimization problems, each with a complexity that scales exponentially with the number of users. This work introduces a novel ultra-low-complexity, non-linear detection scheme that performs joint Detection and Approximate Reliability Estimation (DARE). For the first time, DARE can substantially improve the achievable throughput (e.g., 40%) with less than 2x the complexity of linear MMSE, making non-linear processing extremely practical. To enable this, DARE includes a novel procedure to approximate the reliability of the received bits based on the region of the received observable that can efficiently approach the accurately calculated soft detection performance. In addition, we show that DARE can achieve a better throughput than linear detection when using just half the base station antennas, resulting in substantial power savings (e.g., 500 W). Consequently, DARE is a very strong candidate for future power-efficient MU-MIMO developments, even in the case of software-based implementations, as in the case of emerging Open-RAN systems. Furthermore, DARE can achieve the throughput of the state-of-the-art non-linear detectors with complexity requirements that are orders of magnitude lower.</description><subject>Complexity</subject><subject>Detectors</subject><subject>MIMO communication</subject><subject>Nonlinear systems</subject><subject>Reliability</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwD80pKUrU9ckv13XOzy3ISa3ILKnUUfDLz9P1ycxLTSxSCCjKT04tLs7MS1dIyy9S8A3V9fX09VcIriwuSc0t5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGMDS3NLUxMzE2Nj4lQBAIuHN8Y</recordid><startdate>20240924</startdate><enddate>20240924</enddate><creator>Jayawardena, Chathura</creator><creator>Nikitopoulos, Konstantinos</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240924</creationdate><title>Ultra-Low-Complexity, Non-Linear Processing for MU-MIMO Systems</title><author>Jayawardena, Chathura ; Nikitopoulos, Konstantinos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30979546433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complexity</topic><topic>Detectors</topic><topic>MIMO communication</topic><topic>Nonlinear systems</topic><topic>Reliability</topic><toplevel>online_resources</toplevel><creatorcontrib>Jayawardena, Chathura</creatorcontrib><creatorcontrib>Nikitopoulos, Konstantinos</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jayawardena, Chathura</au><au>Nikitopoulos, Konstantinos</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Ultra-Low-Complexity, Non-Linear Processing for MU-MIMO Systems</atitle><jtitle>arXiv.org</jtitle><date>2024-09-24</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Non-linear detection schemes can substantially improve the achievable throughput and connectivity capabilities of uplink MU-MIMO systems that employ linear detection. However, the complexity requirements of existing non-linear soft detectors that provide substantial gains compared to linear ones are at least an order of magnitude more complex, making their adoption challenging. In particular, joint soft information computation involves solving multiple vector minimization problems, each with a complexity that scales exponentially with the number of users. This work introduces a novel ultra-low-complexity, non-linear detection scheme that performs joint Detection and Approximate Reliability Estimation (DARE). For the first time, DARE can substantially improve the achievable throughput (e.g., 40%) with less than 2x the complexity of linear MMSE, making non-linear processing extremely practical. To enable this, DARE includes a novel procedure to approximate the reliability of the received bits based on the region of the received observable that can efficiently approach the accurately calculated soft detection performance. In addition, we show that DARE can achieve a better throughput than linear detection when using just half the base station antennas, resulting in substantial power savings (e.g., 500 W). Consequently, DARE is a very strong candidate for future power-efficient MU-MIMO developments, even in the case of software-based implementations, as in the case of emerging Open-RAN systems. Furthermore, DARE can achieve the throughput of the state-of-the-art non-linear detectors with complexity requirements that are orders of magnitude lower.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3097954643 |
source | Publicly Available Content Database |
subjects | Complexity Detectors MIMO communication Nonlinear systems Reliability |
title | Ultra-Low-Complexity, Non-Linear Processing for MU-MIMO Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Ultra-Low-Complexity,%20Non-Linear%20Processing%20for%20MU-MIMO%20Systems&rft.jtitle=arXiv.org&rft.au=Jayawardena,%20Chathura&rft.date=2024-09-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3097954643%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30979546433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3097954643&rft_id=info:pmid/&rfr_iscdi=true |