Loading…
Tracking the Dynamics and Uncertainties of Soil Organic Carbon in Agricultural Soils Based on a Novel Robust Meta-Model Framework Using Multisource Data
Monitoring and estimating spatially resolved changes in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at assisting land degradation neutrality and climate change mitigation, improving soil fertility and food production, maintaining water qual...
Saved in:
Published in: | Sustainability 2024-08, Vol.16 (16), p.6849 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c148t-ca4bde528421e0b5f6b8a361414ca7638e017a482573bedbe7e207bdbcd005553 |
container_end_page | |
container_issue | 16 |
container_start_page | 6849 |
container_title | Sustainability |
container_volume | 16 |
creator | Ermolieva, Tatiana Havlik, Petr Lessa-Derci-Augustynczik, Andrey Frank, Stefan Balkovic, Juraj Skalsky, Rastislav Deppermann, Andre Nakhavali, Mahdi (Andrè) Komendantova, Nadejda Kahil, Taher Wang, Gang Folberth, Christian Knopov, Pavel S. |
description | Monitoring and estimating spatially resolved changes in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at assisting land degradation neutrality and climate change mitigation, improving soil fertility and food production, maintaining water quality, and enhancing renewable energy and ecosystem services. In this work, we report on the development and application of a data-driven, quantile regression machine learning model to estimate and predict annual SOC stocks at plow depth under the variability of climate. The model enables the analysis of SOC content levels and respective probabilities of their occurrence as a function of exogenous parameters such as monthly temperature and precipitation and endogenous, decision-dependent parameters, which can be altered by land use practices. The estimated quantiles and their trends indicate the uncertainty ranges and the respective likelihoods of plausible SOC content. The model can be used as a reduced-form scenario generator of stochastic SOC scenarios. It can be integrated as a submodel in Integrated Assessment models with detailed land use sectors such as GLOBIOM to analyze costs and find optimal land management practices to sequester SOC and fulfill food–water–energy–-environmental NEXUS security goals. |
doi_str_mv | 10.3390/su16166849 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3098211781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098211781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-ca4bde528421e0b5f6b8a361414ca7638e017a482573bedbe7e207bdbcd005553</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKJg0V78BQFvwmqy2Y_0WKtVobWg7Xl5yWZr2m1Sk6zSf-LPNbWCvst7zBtmhkHogpJrxgbkxne0oEXBs8ER6qWkpAklOTn-d5-ivvcrEocxOqBFD33NHci1Nksc3hS-2xnYaOkxmBovjFQugDZBK49tg1-tbvHMLcFoiUfghDVYGzxcOi27NnQO2h-Ox7fgVY3jG_Cz_VAtfrGi8wFPVYBkauuIjB1s1Kd1a7zwe_tpVNDedk7GGBDgHJ000HrV_91naDG-n48ek8ns4Wk0nCSSZjwkEjJRqzzlWUoVEXlTCA6soBnNJJQF44rQEjKe5iUTqhaqVLENUQtZE5LnOTtDlwfdrbPvnfKhWsUQJlpWjAx4SmnJaWRdHVjSWe-daqqt0xtwu4qSal9-9Vc--wat9Xgd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098211781</pqid></control><display><type>article</type><title>Tracking the Dynamics and Uncertainties of Soil Organic Carbon in Agricultural Soils Based on a Novel Robust Meta-Model Framework Using Multisource Data</title><source>Publicly Available Content Database</source><creator>Ermolieva, Tatiana ; Havlik, Petr ; Lessa-Derci-Augustynczik, Andrey ; Frank, Stefan ; Balkovic, Juraj ; Skalsky, Rastislav ; Deppermann, Andre ; Nakhavali, Mahdi (Andrè) ; Komendantova, Nadejda ; Kahil, Taher ; Wang, Gang ; Folberth, Christian ; Knopov, Pavel S.</creator><creatorcontrib>Ermolieva, Tatiana ; Havlik, Petr ; Lessa-Derci-Augustynczik, Andrey ; Frank, Stefan ; Balkovic, Juraj ; Skalsky, Rastislav ; Deppermann, Andre ; Nakhavali, Mahdi (Andrè) ; Komendantova, Nadejda ; Kahil, Taher ; Wang, Gang ; Folberth, Christian ; Knopov, Pavel S.</creatorcontrib><description>Monitoring and estimating spatially resolved changes in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at assisting land degradation neutrality and climate change mitigation, improving soil fertility and food production, maintaining water quality, and enhancing renewable energy and ecosystem services. In this work, we report on the development and application of a data-driven, quantile regression machine learning model to estimate and predict annual SOC stocks at plow depth under the variability of climate. The model enables the analysis of SOC content levels and respective probabilities of their occurrence as a function of exogenous parameters such as monthly temperature and precipitation and endogenous, decision-dependent parameters, which can be altered by land use practices. The estimated quantiles and their trends indicate the uncertainty ranges and the respective likelihoods of plausible SOC content. The model can be used as a reduced-form scenario generator of stochastic SOC scenarios. It can be integrated as a submodel in Integrated Assessment models with detailed land use sectors such as GLOBIOM to analyze costs and find optimal land management practices to sequester SOC and fulfill food–water–energy–-environmental NEXUS security goals.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16166849</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Biodiesel fuels ; Biofuels ; Carbon sequestration ; Climate change ; Crop residues ; Decomposition ; Land degradation ; Land use planning ; Machine learning ; Nitrogen ; Precipitation ; Productivity ; Respiration ; Trends</subject><ispartof>Sustainability, 2024-08, Vol.16 (16), p.6849</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-ca4bde528421e0b5f6b8a361414ca7638e017a482573bedbe7e207bdbcd005553</cites><orcidid>0000-0002-7812-5271 ; 0000-0003-2675-6730 ; 0000-0003-2568-6179 ; 0000-0002-0983-6897 ; 0000-0003-2955-4931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3098211781/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3098211781?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Ermolieva, Tatiana</creatorcontrib><creatorcontrib>Havlik, Petr</creatorcontrib><creatorcontrib>Lessa-Derci-Augustynczik, Andrey</creatorcontrib><creatorcontrib>Frank, Stefan</creatorcontrib><creatorcontrib>Balkovic, Juraj</creatorcontrib><creatorcontrib>Skalsky, Rastislav</creatorcontrib><creatorcontrib>Deppermann, Andre</creatorcontrib><creatorcontrib>Nakhavali, Mahdi (Andrè)</creatorcontrib><creatorcontrib>Komendantova, Nadejda</creatorcontrib><creatorcontrib>Kahil, Taher</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Folberth, Christian</creatorcontrib><creatorcontrib>Knopov, Pavel S.</creatorcontrib><title>Tracking the Dynamics and Uncertainties of Soil Organic Carbon in Agricultural Soils Based on a Novel Robust Meta-Model Framework Using Multisource Data</title><title>Sustainability</title><description>Monitoring and estimating spatially resolved changes in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at assisting land degradation neutrality and climate change mitigation, improving soil fertility and food production, maintaining water quality, and enhancing renewable energy and ecosystem services. In this work, we report on the development and application of a data-driven, quantile regression machine learning model to estimate and predict annual SOC stocks at plow depth under the variability of climate. The model enables the analysis of SOC content levels and respective probabilities of their occurrence as a function of exogenous parameters such as monthly temperature and precipitation and endogenous, decision-dependent parameters, which can be altered by land use practices. The estimated quantiles and their trends indicate the uncertainty ranges and the respective likelihoods of plausible SOC content. The model can be used as a reduced-form scenario generator of stochastic SOC scenarios. It can be integrated as a submodel in Integrated Assessment models with detailed land use sectors such as GLOBIOM to analyze costs and find optimal land management practices to sequester SOC and fulfill food–water–energy–-environmental NEXUS security goals.</description><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Carbon sequestration</subject><subject>Climate change</subject><subject>Crop residues</subject><subject>Decomposition</subject><subject>Land degradation</subject><subject>Land use planning</subject><subject>Machine learning</subject><subject>Nitrogen</subject><subject>Precipitation</subject><subject>Productivity</subject><subject>Respiration</subject><subject>Trends</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUE1LAzEUDKJg0V78BQFvwmqy2Y_0WKtVobWg7Xl5yWZr2m1Sk6zSf-LPNbWCvst7zBtmhkHogpJrxgbkxne0oEXBs8ER6qWkpAklOTn-d5-ivvcrEocxOqBFD33NHci1Nksc3hS-2xnYaOkxmBovjFQugDZBK49tg1-tbvHMLcFoiUfghDVYGzxcOi27NnQO2h-Ox7fgVY3jG_Cz_VAtfrGi8wFPVYBkauuIjB1s1Kd1a7zwe_tpVNDedk7GGBDgHJ000HrV_91naDG-n48ek8ns4Wk0nCSSZjwkEjJRqzzlWUoVEXlTCA6soBnNJJQF44rQEjKe5iUTqhaqVLENUQtZE5LnOTtDlwfdrbPvnfKhWsUQJlpWjAx4SmnJaWRdHVjSWe-daqqt0xtwu4qSal9-9Vc--wat9Xgd</recordid><startdate>20240809</startdate><enddate>20240809</enddate><creator>Ermolieva, Tatiana</creator><creator>Havlik, Petr</creator><creator>Lessa-Derci-Augustynczik, Andrey</creator><creator>Frank, Stefan</creator><creator>Balkovic, Juraj</creator><creator>Skalsky, Rastislav</creator><creator>Deppermann, Andre</creator><creator>Nakhavali, Mahdi (Andrè)</creator><creator>Komendantova, Nadejda</creator><creator>Kahil, Taher</creator><creator>Wang, Gang</creator><creator>Folberth, Christian</creator><creator>Knopov, Pavel S.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7812-5271</orcidid><orcidid>https://orcid.org/0000-0003-2675-6730</orcidid><orcidid>https://orcid.org/0000-0003-2568-6179</orcidid><orcidid>https://orcid.org/0000-0002-0983-6897</orcidid><orcidid>https://orcid.org/0000-0003-2955-4931</orcidid></search><sort><creationdate>20240809</creationdate><title>Tracking the Dynamics and Uncertainties of Soil Organic Carbon in Agricultural Soils Based on a Novel Robust Meta-Model Framework Using Multisource Data</title><author>Ermolieva, Tatiana ; Havlik, Petr ; Lessa-Derci-Augustynczik, Andrey ; Frank, Stefan ; Balkovic, Juraj ; Skalsky, Rastislav ; Deppermann, Andre ; Nakhavali, Mahdi (Andrè) ; Komendantova, Nadejda ; Kahil, Taher ; Wang, Gang ; Folberth, Christian ; Knopov, Pavel S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-ca4bde528421e0b5f6b8a361414ca7638e017a482573bedbe7e207bdbcd005553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Carbon sequestration</topic><topic>Climate change</topic><topic>Crop residues</topic><topic>Decomposition</topic><topic>Land degradation</topic><topic>Land use planning</topic><topic>Machine learning</topic><topic>Nitrogen</topic><topic>Precipitation</topic><topic>Productivity</topic><topic>Respiration</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ermolieva, Tatiana</creatorcontrib><creatorcontrib>Havlik, Petr</creatorcontrib><creatorcontrib>Lessa-Derci-Augustynczik, Andrey</creatorcontrib><creatorcontrib>Frank, Stefan</creatorcontrib><creatorcontrib>Balkovic, Juraj</creatorcontrib><creatorcontrib>Skalsky, Rastislav</creatorcontrib><creatorcontrib>Deppermann, Andre</creatorcontrib><creatorcontrib>Nakhavali, Mahdi (Andrè)</creatorcontrib><creatorcontrib>Komendantova, Nadejda</creatorcontrib><creatorcontrib>Kahil, Taher</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Folberth, Christian</creatorcontrib><creatorcontrib>Knopov, Pavel S.</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ermolieva, Tatiana</au><au>Havlik, Petr</au><au>Lessa-Derci-Augustynczik, Andrey</au><au>Frank, Stefan</au><au>Balkovic, Juraj</au><au>Skalsky, Rastislav</au><au>Deppermann, Andre</au><au>Nakhavali, Mahdi (Andrè)</au><au>Komendantova, Nadejda</au><au>Kahil, Taher</au><au>Wang, Gang</au><au>Folberth, Christian</au><au>Knopov, Pavel S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking the Dynamics and Uncertainties of Soil Organic Carbon in Agricultural Soils Based on a Novel Robust Meta-Model Framework Using Multisource Data</atitle><jtitle>Sustainability</jtitle><date>2024-08-09</date><risdate>2024</risdate><volume>16</volume><issue>16</issue><spage>6849</spage><pages>6849-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Monitoring and estimating spatially resolved changes in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at assisting land degradation neutrality and climate change mitigation, improving soil fertility and food production, maintaining water quality, and enhancing renewable energy and ecosystem services. In this work, we report on the development and application of a data-driven, quantile regression machine learning model to estimate and predict annual SOC stocks at plow depth under the variability of climate. The model enables the analysis of SOC content levels and respective probabilities of their occurrence as a function of exogenous parameters such as monthly temperature and precipitation and endogenous, decision-dependent parameters, which can be altered by land use practices. The estimated quantiles and their trends indicate the uncertainty ranges and the respective likelihoods of plausible SOC content. The model can be used as a reduced-form scenario generator of stochastic SOC scenarios. It can be integrated as a submodel in Integrated Assessment models with detailed land use sectors such as GLOBIOM to analyze costs and find optimal land management practices to sequester SOC and fulfill food–water–energy–-environmental NEXUS security goals.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16166849</doi><orcidid>https://orcid.org/0000-0002-7812-5271</orcidid><orcidid>https://orcid.org/0000-0003-2675-6730</orcidid><orcidid>https://orcid.org/0000-0003-2568-6179</orcidid><orcidid>https://orcid.org/0000-0002-0983-6897</orcidid><orcidid>https://orcid.org/0000-0003-2955-4931</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2024-08, Vol.16 (16), p.6849 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_3098211781 |
source | Publicly Available Content Database |
subjects | Biodiesel fuels Biofuels Carbon sequestration Climate change Crop residues Decomposition Land degradation Land use planning Machine learning Nitrogen Precipitation Productivity Respiration Trends |
title | Tracking the Dynamics and Uncertainties of Soil Organic Carbon in Agricultural Soils Based on a Novel Robust Meta-Model Framework Using Multisource Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20the%20Dynamics%20and%20Uncertainties%20of%20Soil%20Organic%20Carbon%20in%20Agricultural%20Soils%20Based%20on%20a%20Novel%20Robust%20Meta-Model%20Framework%20Using%20Multisource%20Data&rft.jtitle=Sustainability&rft.au=Ermolieva,%20Tatiana&rft.date=2024-08-09&rft.volume=16&rft.issue=16&rft.spage=6849&rft.pages=6849-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16166849&rft_dat=%3Cproquest_cross%3E3098211781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c148t-ca4bde528421e0b5f6b8a361414ca7638e017a482573bedbe7e207bdbcd005553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3098211781&rft_id=info:pmid/&rfr_iscdi=true |