Loading…

Tracking the Dynamics and Uncertainties of Soil Organic Carbon in Agricultural Soils Based on a Novel Robust Meta-Model Framework Using Multisource Data

Monitoring and estimating spatially resolved changes in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at assisting land degradation neutrality and climate change mitigation, improving soil fertility and food production, maintaining water qual...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2024-08, Vol.16 (16), p.6849
Main Authors: Ermolieva, Tatiana, Havlik, Petr, Lessa-Derci-Augustynczik, Andrey, Frank, Stefan, Balkovic, Juraj, Skalsky, Rastislav, Deppermann, Andre, Nakhavali, Mahdi (Andrè), Komendantova, Nadejda, Kahil, Taher, Wang, Gang, Folberth, Christian, Knopov, Pavel S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c148t-ca4bde528421e0b5f6b8a361414ca7638e017a482573bedbe7e207bdbcd005553
container_end_page
container_issue 16
container_start_page 6849
container_title Sustainability
container_volume 16
creator Ermolieva, Tatiana
Havlik, Petr
Lessa-Derci-Augustynczik, Andrey
Frank, Stefan
Balkovic, Juraj
Skalsky, Rastislav
Deppermann, Andre
Nakhavali, Mahdi (Andrè)
Komendantova, Nadejda
Kahil, Taher
Wang, Gang
Folberth, Christian
Knopov, Pavel S.
description Monitoring and estimating spatially resolved changes in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at assisting land degradation neutrality and climate change mitigation, improving soil fertility and food production, maintaining water quality, and enhancing renewable energy and ecosystem services. In this work, we report on the development and application of a data-driven, quantile regression machine learning model to estimate and predict annual SOC stocks at plow depth under the variability of climate. The model enables the analysis of SOC content levels and respective probabilities of their occurrence as a function of exogenous parameters such as monthly temperature and precipitation and endogenous, decision-dependent parameters, which can be altered by land use practices. The estimated quantiles and their trends indicate the uncertainty ranges and the respective likelihoods of plausible SOC content. The model can be used as a reduced-form scenario generator of stochastic SOC scenarios. It can be integrated as a submodel in Integrated Assessment models with detailed land use sectors such as GLOBIOM to analyze costs and find optimal land management practices to sequester SOC and fulfill food–water–energy–-environmental NEXUS security goals.
doi_str_mv 10.3390/su16166849
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3098211781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098211781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-ca4bde528421e0b5f6b8a361414ca7638e017a482573bedbe7e207bdbcd005553</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKJg0V78BQFvwmqy2Y_0WKtVobWg7Xl5yWZr2m1Sk6zSf-LPNbWCvst7zBtmhkHogpJrxgbkxne0oEXBs8ER6qWkpAklOTn-d5-ivvcrEocxOqBFD33NHci1Nksc3hS-2xnYaOkxmBovjFQugDZBK49tg1-tbvHMLcFoiUfghDVYGzxcOi27NnQO2h-Ox7fgVY3jG_Cz_VAtfrGi8wFPVYBkauuIjB1s1Kd1a7zwe_tpVNDedk7GGBDgHJ000HrV_91naDG-n48ek8ns4Wk0nCSSZjwkEjJRqzzlWUoVEXlTCA6soBnNJJQF44rQEjKe5iUTqhaqVLENUQtZE5LnOTtDlwfdrbPvnfKhWsUQJlpWjAx4SmnJaWRdHVjSWe-daqqt0xtwu4qSal9-9Vc--wat9Xgd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098211781</pqid></control><display><type>article</type><title>Tracking the Dynamics and Uncertainties of Soil Organic Carbon in Agricultural Soils Based on a Novel Robust Meta-Model Framework Using Multisource Data</title><source>Publicly Available Content Database</source><creator>Ermolieva, Tatiana ; Havlik, Petr ; Lessa-Derci-Augustynczik, Andrey ; Frank, Stefan ; Balkovic, Juraj ; Skalsky, Rastislav ; Deppermann, Andre ; Nakhavali, Mahdi (Andrè) ; Komendantova, Nadejda ; Kahil, Taher ; Wang, Gang ; Folberth, Christian ; Knopov, Pavel S.</creator><creatorcontrib>Ermolieva, Tatiana ; Havlik, Petr ; Lessa-Derci-Augustynczik, Andrey ; Frank, Stefan ; Balkovic, Juraj ; Skalsky, Rastislav ; Deppermann, Andre ; Nakhavali, Mahdi (Andrè) ; Komendantova, Nadejda ; Kahil, Taher ; Wang, Gang ; Folberth, Christian ; Knopov, Pavel S.</creatorcontrib><description>Monitoring and estimating spatially resolved changes in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at assisting land degradation neutrality and climate change mitigation, improving soil fertility and food production, maintaining water quality, and enhancing renewable energy and ecosystem services. In this work, we report on the development and application of a data-driven, quantile regression machine learning model to estimate and predict annual SOC stocks at plow depth under the variability of climate. The model enables the analysis of SOC content levels and respective probabilities of their occurrence as a function of exogenous parameters such as monthly temperature and precipitation and endogenous, decision-dependent parameters, which can be altered by land use practices. The estimated quantiles and their trends indicate the uncertainty ranges and the respective likelihoods of plausible SOC content. The model can be used as a reduced-form scenario generator of stochastic SOC scenarios. It can be integrated as a submodel in Integrated Assessment models with detailed land use sectors such as GLOBIOM to analyze costs and find optimal land management practices to sequester SOC and fulfill food–water–energy–-environmental NEXUS security goals.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16166849</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Biodiesel fuels ; Biofuels ; Carbon sequestration ; Climate change ; Crop residues ; Decomposition ; Land degradation ; Land use planning ; Machine learning ; Nitrogen ; Precipitation ; Productivity ; Respiration ; Trends</subject><ispartof>Sustainability, 2024-08, Vol.16 (16), p.6849</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-ca4bde528421e0b5f6b8a361414ca7638e017a482573bedbe7e207bdbcd005553</cites><orcidid>0000-0002-7812-5271 ; 0000-0003-2675-6730 ; 0000-0003-2568-6179 ; 0000-0002-0983-6897 ; 0000-0003-2955-4931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3098211781/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3098211781?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Ermolieva, Tatiana</creatorcontrib><creatorcontrib>Havlik, Petr</creatorcontrib><creatorcontrib>Lessa-Derci-Augustynczik, Andrey</creatorcontrib><creatorcontrib>Frank, Stefan</creatorcontrib><creatorcontrib>Balkovic, Juraj</creatorcontrib><creatorcontrib>Skalsky, Rastislav</creatorcontrib><creatorcontrib>Deppermann, Andre</creatorcontrib><creatorcontrib>Nakhavali, Mahdi (Andrè)</creatorcontrib><creatorcontrib>Komendantova, Nadejda</creatorcontrib><creatorcontrib>Kahil, Taher</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Folberth, Christian</creatorcontrib><creatorcontrib>Knopov, Pavel S.</creatorcontrib><title>Tracking the Dynamics and Uncertainties of Soil Organic Carbon in Agricultural Soils Based on a Novel Robust Meta-Model Framework Using Multisource Data</title><title>Sustainability</title><description>Monitoring and estimating spatially resolved changes in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at assisting land degradation neutrality and climate change mitigation, improving soil fertility and food production, maintaining water quality, and enhancing renewable energy and ecosystem services. In this work, we report on the development and application of a data-driven, quantile regression machine learning model to estimate and predict annual SOC stocks at plow depth under the variability of climate. The model enables the analysis of SOC content levels and respective probabilities of their occurrence as a function of exogenous parameters such as monthly temperature and precipitation and endogenous, decision-dependent parameters, which can be altered by land use practices. The estimated quantiles and their trends indicate the uncertainty ranges and the respective likelihoods of plausible SOC content. The model can be used as a reduced-form scenario generator of stochastic SOC scenarios. It can be integrated as a submodel in Integrated Assessment models with detailed land use sectors such as GLOBIOM to analyze costs and find optimal land management practices to sequester SOC and fulfill food–water–energy–-environmental NEXUS security goals.</description><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Carbon sequestration</subject><subject>Climate change</subject><subject>Crop residues</subject><subject>Decomposition</subject><subject>Land degradation</subject><subject>Land use planning</subject><subject>Machine learning</subject><subject>Nitrogen</subject><subject>Precipitation</subject><subject>Productivity</subject><subject>Respiration</subject><subject>Trends</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUE1LAzEUDKJg0V78BQFvwmqy2Y_0WKtVobWg7Xl5yWZr2m1Sk6zSf-LPNbWCvst7zBtmhkHogpJrxgbkxne0oEXBs8ER6qWkpAklOTn-d5-ivvcrEocxOqBFD33NHci1Nksc3hS-2xnYaOkxmBovjFQugDZBK49tg1-tbvHMLcFoiUfghDVYGzxcOi27NnQO2h-Ox7fgVY3jG_Cz_VAtfrGi8wFPVYBkauuIjB1s1Kd1a7zwe_tpVNDedk7GGBDgHJ000HrV_91naDG-n48ek8ns4Wk0nCSSZjwkEjJRqzzlWUoVEXlTCA6soBnNJJQF44rQEjKe5iUTqhaqVLENUQtZE5LnOTtDlwfdrbPvnfKhWsUQJlpWjAx4SmnJaWRdHVjSWe-daqqt0xtwu4qSal9-9Vc--wat9Xgd</recordid><startdate>20240809</startdate><enddate>20240809</enddate><creator>Ermolieva, Tatiana</creator><creator>Havlik, Petr</creator><creator>Lessa-Derci-Augustynczik, Andrey</creator><creator>Frank, Stefan</creator><creator>Balkovic, Juraj</creator><creator>Skalsky, Rastislav</creator><creator>Deppermann, Andre</creator><creator>Nakhavali, Mahdi (Andrè)</creator><creator>Komendantova, Nadejda</creator><creator>Kahil, Taher</creator><creator>Wang, Gang</creator><creator>Folberth, Christian</creator><creator>Knopov, Pavel S.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7812-5271</orcidid><orcidid>https://orcid.org/0000-0003-2675-6730</orcidid><orcidid>https://orcid.org/0000-0003-2568-6179</orcidid><orcidid>https://orcid.org/0000-0002-0983-6897</orcidid><orcidid>https://orcid.org/0000-0003-2955-4931</orcidid></search><sort><creationdate>20240809</creationdate><title>Tracking the Dynamics and Uncertainties of Soil Organic Carbon in Agricultural Soils Based on a Novel Robust Meta-Model Framework Using Multisource Data</title><author>Ermolieva, Tatiana ; Havlik, Petr ; Lessa-Derci-Augustynczik, Andrey ; Frank, Stefan ; Balkovic, Juraj ; Skalsky, Rastislav ; Deppermann, Andre ; Nakhavali, Mahdi (Andrè) ; Komendantova, Nadejda ; Kahil, Taher ; Wang, Gang ; Folberth, Christian ; Knopov, Pavel S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-ca4bde528421e0b5f6b8a361414ca7638e017a482573bedbe7e207bdbcd005553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Carbon sequestration</topic><topic>Climate change</topic><topic>Crop residues</topic><topic>Decomposition</topic><topic>Land degradation</topic><topic>Land use planning</topic><topic>Machine learning</topic><topic>Nitrogen</topic><topic>Precipitation</topic><topic>Productivity</topic><topic>Respiration</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ermolieva, Tatiana</creatorcontrib><creatorcontrib>Havlik, Petr</creatorcontrib><creatorcontrib>Lessa-Derci-Augustynczik, Andrey</creatorcontrib><creatorcontrib>Frank, Stefan</creatorcontrib><creatorcontrib>Balkovic, Juraj</creatorcontrib><creatorcontrib>Skalsky, Rastislav</creatorcontrib><creatorcontrib>Deppermann, Andre</creatorcontrib><creatorcontrib>Nakhavali, Mahdi (Andrè)</creatorcontrib><creatorcontrib>Komendantova, Nadejda</creatorcontrib><creatorcontrib>Kahil, Taher</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Folberth, Christian</creatorcontrib><creatorcontrib>Knopov, Pavel S.</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ermolieva, Tatiana</au><au>Havlik, Petr</au><au>Lessa-Derci-Augustynczik, Andrey</au><au>Frank, Stefan</au><au>Balkovic, Juraj</au><au>Skalsky, Rastislav</au><au>Deppermann, Andre</au><au>Nakhavali, Mahdi (Andrè)</au><au>Komendantova, Nadejda</au><au>Kahil, Taher</au><au>Wang, Gang</au><au>Folberth, Christian</au><au>Knopov, Pavel S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking the Dynamics and Uncertainties of Soil Organic Carbon in Agricultural Soils Based on a Novel Robust Meta-Model Framework Using Multisource Data</atitle><jtitle>Sustainability</jtitle><date>2024-08-09</date><risdate>2024</risdate><volume>16</volume><issue>16</issue><spage>6849</spage><pages>6849-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Monitoring and estimating spatially resolved changes in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at assisting land degradation neutrality and climate change mitigation, improving soil fertility and food production, maintaining water quality, and enhancing renewable energy and ecosystem services. In this work, we report on the development and application of a data-driven, quantile regression machine learning model to estimate and predict annual SOC stocks at plow depth under the variability of climate. The model enables the analysis of SOC content levels and respective probabilities of their occurrence as a function of exogenous parameters such as monthly temperature and precipitation and endogenous, decision-dependent parameters, which can be altered by land use practices. The estimated quantiles and their trends indicate the uncertainty ranges and the respective likelihoods of plausible SOC content. The model can be used as a reduced-form scenario generator of stochastic SOC scenarios. It can be integrated as a submodel in Integrated Assessment models with detailed land use sectors such as GLOBIOM to analyze costs and find optimal land management practices to sequester SOC and fulfill food–water–energy–-environmental NEXUS security goals.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16166849</doi><orcidid>https://orcid.org/0000-0002-7812-5271</orcidid><orcidid>https://orcid.org/0000-0003-2675-6730</orcidid><orcidid>https://orcid.org/0000-0003-2568-6179</orcidid><orcidid>https://orcid.org/0000-0002-0983-6897</orcidid><orcidid>https://orcid.org/0000-0003-2955-4931</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2024-08, Vol.16 (16), p.6849
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_3098211781
source Publicly Available Content Database
subjects Biodiesel fuels
Biofuels
Carbon sequestration
Climate change
Crop residues
Decomposition
Land degradation
Land use planning
Machine learning
Nitrogen
Precipitation
Productivity
Respiration
Trends
title Tracking the Dynamics and Uncertainties of Soil Organic Carbon in Agricultural Soils Based on a Novel Robust Meta-Model Framework Using Multisource Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20the%20Dynamics%20and%20Uncertainties%20of%20Soil%20Organic%20Carbon%20in%20Agricultural%20Soils%20Based%20on%20a%20Novel%20Robust%20Meta-Model%20Framework%20Using%20Multisource%20Data&rft.jtitle=Sustainability&rft.au=Ermolieva,%20Tatiana&rft.date=2024-08-09&rft.volume=16&rft.issue=16&rft.spage=6849&rft.pages=6849-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16166849&rft_dat=%3Cproquest_cross%3E3098211781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c148t-ca4bde528421e0b5f6b8a361414ca7638e017a482573bedbe7e207bdbcd005553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3098211781&rft_id=info:pmid/&rfr_iscdi=true