Loading…
Thermomechanical Characterization of Oleogels Elaborated with a Low Molecular Weight Ethyl Cellulose and Monoglycerides
The interaction between a low molecular weight (i.e., 19 kDa) ethyl cellulose (EC) and a commercial monoglyceride (MGc) in the development of EC-MGc oleogels was evaluated through rheological, DSC, and infrared spectroscopy measurements. The oleogels were developed through cooling (80°C to 2°C, 10°C...
Saved in:
Published in: | Food biophysics 2024-09, Vol.19 (3), p.517-534 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The interaction between a low molecular weight (i.e., 19 kDa) ethyl cellulose (EC) and a commercial monoglyceride (MGc) in the development of EC-MGc oleogels was evaluated through rheological, DSC, and infrared spectroscopy measurements. The oleogels were developed through cooling (80°C to 2°C, 10°C/min) vegetal oil solutions of EC at concentrations above (10%), below (7%), and at EC’s minimal gelling concentration (8%), and in EC-MGc mixtures using MGc below its minimal gelling concentration (0%, 0.1%, 0.25%, 0.5%, 1%). At 0.10% MGc most of the monoglycerides developed hydrogen bonds with the EC developing oleogels structured through EC-monoglyceride-EC interactions. As the EC concentration increased the EC-0.1% MGc oleogels achieved higher elasticity (G’) than the EC oleogels. Using MGc concentrations ≥ 0.25% the excess of monoglyceride increased the oil’s relative polarity favoring the EC-EC over the EC-monoglyceride-EC interactions. Below 10 °C the monoglycerides in the oil crystallized within the free spaces of the entangled EC fibers acting as active filler. Thus, at the same EC concentration the EC-0.25% MGc, EC-0.50% MGc, and EC-1% MGc oleogels achieved higher G’ than the corresponding EC-0.10% MGc oleogels (
P
|
---|---|
ISSN: | 1557-1858 1557-1866 |
DOI: | 10.1007/s11483-024-09835-9 |