Loading…

Roadside Intelligence: Efficient Channel Estimation for IRS-Aided mmWave Vehicular Communication

Fifth-generation(5G) and beyond communication systems, assisted by Intelligent Reflecting Surfaces (IRS), often encounter hindrances such as unreliable connections, high energy usage, and prolonged latency. Channel estimation in IRS-aided systems is challenging in vehicular communication systems wit...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.115883-115894
Main Authors: Nandan, S., Abdul Rahiman, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c244t-cc7b732bb4e9a262cf711d5526eb38323ce671d38466e4734458b844b942692c3
container_end_page 115894
container_issue
container_start_page 115883
container_title IEEE access
container_volume 12
creator Nandan, S.
Abdul Rahiman, M.
description Fifth-generation(5G) and beyond communication systems, assisted by Intelligent Reflecting Surfaces (IRS), often encounter hindrances such as unreliable connections, high energy usage, and prolonged latency. Channel estimation in IRS-aided systems is challenging in vehicular communication systems with roadside IRS units and fast-moving users. This paper proposes an efficient and low-complex channel estimation strategy for high-speed vehicular mmWave communication systems equipped with roadside IRS. The method consists of two stages, sensing and prediction, which aim to improve efficiency and accuracy under dynamic channel conditions. In the sensing phase, an initial assessment of channel characteristics is estimated by exploiting the sparse nature of the channel. We use the Compressive Sampling Matching Pursuit (CoSaMP) algorithm for accurate estimation with reduced computational complexity. The prediction stage consists of real-time tracking and prediction of the Angle of Arrival (AoA) and the Angle of Departure (AoD) using the Extended Kalman Filter (EKF). This ensures more accurate dynamic channel estimation based on predicted array response vectors without increasing the pilot overhead. Simulation results demonstrate that our proposed approach can offer precise channel estimation with significantly reduced training overhead.
doi_str_mv 10.1109/ACCESS.2024.3445528
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3098888012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10638553</ieee_id><doaj_id>oai_doaj_org_article_1ce60acc7f5f49f3b6599904df911b0b</doaj_id><sourcerecordid>3098888012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-cc7b732bb4e9a262cf711d5526eb38323ce671d38466e4734458b844b942692c3</originalsourceid><addsrcrecordid>eNpNUUtLxDAQLqKgqL9ADwHPXfNq2nhbyqoLguD6OMYknWiWttG0K_jvzW5FnMsMw_eY4cuyM4JnhGB5Oa_rxWo1o5jyGeO8KGi1lx1RImTOCib2_82H2ekwrHGqKq2K8ih7fQi6GXwDaNmP0Lb-DXoLV2jhnLce-hHV77rvoUWLYfSdHn3okQsRLR9W-TzxGtR1L_oL0DO8e7tpdUR16LpN7-0OfJIdON0OcPrbj7On68VjfZvf3d8s6_ldbinnY25taUpGjeEgNRXUupKQJv0iwLCKUWZBlKRhFRcCeLn9szIV50ZyKiS17DhbTrpN0Gv1EdOt8VsF7dVuEeKb0nH0tgVFkhbWydEVjkvHjCiklJg3ThJisElaF5PWRwyfGxhGtQ6b2KfzFcOySoUJTSg2oWwMwxDB_bkSrLbJqCkZtU1G_SaTWOcTywPAP4ZgVVEw9gOxuIjx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098888012</pqid></control><display><type>article</type><title>Roadside Intelligence: Efficient Channel Estimation for IRS-Aided mmWave Vehicular Communication</title><source>IEEE Xplore Open Access Journals</source><creator>Nandan, S. ; Abdul Rahiman, M.</creator><creatorcontrib>Nandan, S. ; Abdul Rahiman, M.</creatorcontrib><description>Fifth-generation(5G) and beyond communication systems, assisted by Intelligent Reflecting Surfaces (IRS), often encounter hindrances such as unreliable connections, high energy usage, and prolonged latency. Channel estimation in IRS-aided systems is challenging in vehicular communication systems with roadside IRS units and fast-moving users. This paper proposes an efficient and low-complex channel estimation strategy for high-speed vehicular mmWave communication systems equipped with roadside IRS. The method consists of two stages, sensing and prediction, which aim to improve efficiency and accuracy under dynamic channel conditions. In the sensing phase, an initial assessment of channel characteristics is estimated by exploiting the sparse nature of the channel. We use the Compressive Sampling Matching Pursuit (CoSaMP) algorithm for accurate estimation with reduced computational complexity. The prediction stage consists of real-time tracking and prediction of the Angle of Arrival (AoA) and the Angle of Departure (AoD) using the Extended Kalman Filter (EKF). This ensures more accurate dynamic channel estimation based on predicted array response vectors without increasing the pilot overhead. Simulation results demonstrate that our proposed approach can offer precise channel estimation with significantly reduced training overhead.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3445528</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Angle of arrival ; Channel estimation ; Communication ; Communications systems ; Complexity ; compressive sensing ; Energy consumption ; Extended Kalman filter ; high mobility ; intelligent reflecting surface ; Matched pursuit ; Millimeter wave communication ; millimeter wave communications ; Millimeter waves ; Predictions ; Real time ; Reconfigurable intelligent surfaces ; Roadsides ; Sensors ; Vehicle dynamics ; Vehicular ad hoc networks ; vehicular communication ; Wireless communication</subject><ispartof>IEEE access, 2024, Vol.12, p.115883-115894</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-cc7b732bb4e9a262cf711d5526eb38323ce671d38466e4734458b844b942692c3</cites><orcidid>0000-0001-7261-3242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10638553$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Nandan, S.</creatorcontrib><creatorcontrib>Abdul Rahiman, M.</creatorcontrib><title>Roadside Intelligence: Efficient Channel Estimation for IRS-Aided mmWave Vehicular Communication</title><title>IEEE access</title><addtitle>Access</addtitle><description>Fifth-generation(5G) and beyond communication systems, assisted by Intelligent Reflecting Surfaces (IRS), often encounter hindrances such as unreliable connections, high energy usage, and prolonged latency. Channel estimation in IRS-aided systems is challenging in vehicular communication systems with roadside IRS units and fast-moving users. This paper proposes an efficient and low-complex channel estimation strategy for high-speed vehicular mmWave communication systems equipped with roadside IRS. The method consists of two stages, sensing and prediction, which aim to improve efficiency and accuracy under dynamic channel conditions. In the sensing phase, an initial assessment of channel characteristics is estimated by exploiting the sparse nature of the channel. We use the Compressive Sampling Matching Pursuit (CoSaMP) algorithm for accurate estimation with reduced computational complexity. The prediction stage consists of real-time tracking and prediction of the Angle of Arrival (AoA) and the Angle of Departure (AoD) using the Extended Kalman Filter (EKF). This ensures more accurate dynamic channel estimation based on predicted array response vectors without increasing the pilot overhead. Simulation results demonstrate that our proposed approach can offer precise channel estimation with significantly reduced training overhead.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Angle of arrival</subject><subject>Channel estimation</subject><subject>Communication</subject><subject>Communications systems</subject><subject>Complexity</subject><subject>compressive sensing</subject><subject>Energy consumption</subject><subject>Extended Kalman filter</subject><subject>high mobility</subject><subject>intelligent reflecting surface</subject><subject>Matched pursuit</subject><subject>Millimeter wave communication</subject><subject>millimeter wave communications</subject><subject>Millimeter waves</subject><subject>Predictions</subject><subject>Real time</subject><subject>Reconfigurable intelligent surfaces</subject><subject>Roadsides</subject><subject>Sensors</subject><subject>Vehicle dynamics</subject><subject>Vehicular ad hoc networks</subject><subject>vehicular communication</subject><subject>Wireless communication</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtLxDAQLqKgqL9ADwHPXfNq2nhbyqoLguD6OMYknWiWttG0K_jvzW5FnMsMw_eY4cuyM4JnhGB5Oa_rxWo1o5jyGeO8KGi1lx1RImTOCib2_82H2ekwrHGqKq2K8ih7fQi6GXwDaNmP0Lb-DXoLV2jhnLce-hHV77rvoUWLYfSdHn3okQsRLR9W-TzxGtR1L_oL0DO8e7tpdUR16LpN7-0OfJIdON0OcPrbj7On68VjfZvf3d8s6_ldbinnY25taUpGjeEgNRXUupKQJv0iwLCKUWZBlKRhFRcCeLn9szIV50ZyKiS17DhbTrpN0Gv1EdOt8VsF7dVuEeKb0nH0tgVFkhbWydEVjkvHjCiklJg3ThJisElaF5PWRwyfGxhGtQ6b2KfzFcOySoUJTSg2oWwMwxDB_bkSrLbJqCkZtU1G_SaTWOcTywPAP4ZgVVEw9gOxuIjx</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Nandan, S.</creator><creator>Abdul Rahiman, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7261-3242</orcidid></search><sort><creationdate>2024</creationdate><title>Roadside Intelligence: Efficient Channel Estimation for IRS-Aided mmWave Vehicular Communication</title><author>Nandan, S. ; Abdul Rahiman, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-cc7b732bb4e9a262cf711d5526eb38323ce671d38466e4734458b844b942692c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Angle of arrival</topic><topic>Channel estimation</topic><topic>Communication</topic><topic>Communications systems</topic><topic>Complexity</topic><topic>compressive sensing</topic><topic>Energy consumption</topic><topic>Extended Kalman filter</topic><topic>high mobility</topic><topic>intelligent reflecting surface</topic><topic>Matched pursuit</topic><topic>Millimeter wave communication</topic><topic>millimeter wave communications</topic><topic>Millimeter waves</topic><topic>Predictions</topic><topic>Real time</topic><topic>Reconfigurable intelligent surfaces</topic><topic>Roadsides</topic><topic>Sensors</topic><topic>Vehicle dynamics</topic><topic>Vehicular ad hoc networks</topic><topic>vehicular communication</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nandan, S.</creatorcontrib><creatorcontrib>Abdul Rahiman, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nandan, S.</au><au>Abdul Rahiman, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roadside Intelligence: Efficient Channel Estimation for IRS-Aided mmWave Vehicular Communication</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>115883</spage><epage>115894</epage><pages>115883-115894</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Fifth-generation(5G) and beyond communication systems, assisted by Intelligent Reflecting Surfaces (IRS), often encounter hindrances such as unreliable connections, high energy usage, and prolonged latency. Channel estimation in IRS-aided systems is challenging in vehicular communication systems with roadside IRS units and fast-moving users. This paper proposes an efficient and low-complex channel estimation strategy for high-speed vehicular mmWave communication systems equipped with roadside IRS. The method consists of two stages, sensing and prediction, which aim to improve efficiency and accuracy under dynamic channel conditions. In the sensing phase, an initial assessment of channel characteristics is estimated by exploiting the sparse nature of the channel. We use the Compressive Sampling Matching Pursuit (CoSaMP) algorithm for accurate estimation with reduced computational complexity. The prediction stage consists of real-time tracking and prediction of the Angle of Arrival (AoA) and the Angle of Departure (AoD) using the Extended Kalman Filter (EKF). This ensures more accurate dynamic channel estimation based on predicted array response vectors without increasing the pilot overhead. Simulation results demonstrate that our proposed approach can offer precise channel estimation with significantly reduced training overhead.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3445528</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7261-3242</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.115883-115894
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3098888012
source IEEE Xplore Open Access Journals
subjects Accuracy
Algorithms
Angle of arrival
Channel estimation
Communication
Communications systems
Complexity
compressive sensing
Energy consumption
Extended Kalman filter
high mobility
intelligent reflecting surface
Matched pursuit
Millimeter wave communication
millimeter wave communications
Millimeter waves
Predictions
Real time
Reconfigurable intelligent surfaces
Roadsides
Sensors
Vehicle dynamics
Vehicular ad hoc networks
vehicular communication
Wireless communication
title Roadside Intelligence: Efficient Channel Estimation for IRS-Aided mmWave Vehicular Communication
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A02%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roadside%20Intelligence:%20Efficient%20Channel%20Estimation%20for%20IRS-Aided%20mmWave%20Vehicular%20Communication&rft.jtitle=IEEE%20access&rft.au=Nandan,%20S.&rft.date=2024&rft.volume=12&rft.spage=115883&rft.epage=115894&rft.pages=115883-115894&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3445528&rft_dat=%3Cproquest_ieee_%3E3098888012%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-cc7b732bb4e9a262cf711d5526eb38323ce671d38466e4734458b844b942692c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3098888012&rft_id=info:pmid/&rft_ieee_id=10638553&rfr_iscdi=true