Loading…
Roadside Intelligence: Efficient Channel Estimation for IRS-Aided mmWave Vehicular Communication
Fifth-generation(5G) and beyond communication systems, assisted by Intelligent Reflecting Surfaces (IRS), often encounter hindrances such as unreliable connections, high energy usage, and prolonged latency. Channel estimation in IRS-aided systems is challenging in vehicular communication systems wit...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.115883-115894 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c244t-cc7b732bb4e9a262cf711d5526eb38323ce671d38466e4734458b844b942692c3 |
container_end_page | 115894 |
container_issue | |
container_start_page | 115883 |
container_title | IEEE access |
container_volume | 12 |
creator | Nandan, S. Abdul Rahiman, M. |
description | Fifth-generation(5G) and beyond communication systems, assisted by Intelligent Reflecting Surfaces (IRS), often encounter hindrances such as unreliable connections, high energy usage, and prolonged latency. Channel estimation in IRS-aided systems is challenging in vehicular communication systems with roadside IRS units and fast-moving users. This paper proposes an efficient and low-complex channel estimation strategy for high-speed vehicular mmWave communication systems equipped with roadside IRS. The method consists of two stages, sensing and prediction, which aim to improve efficiency and accuracy under dynamic channel conditions. In the sensing phase, an initial assessment of channel characteristics is estimated by exploiting the sparse nature of the channel. We use the Compressive Sampling Matching Pursuit (CoSaMP) algorithm for accurate estimation with reduced computational complexity. The prediction stage consists of real-time tracking and prediction of the Angle of Arrival (AoA) and the Angle of Departure (AoD) using the Extended Kalman Filter (EKF). This ensures more accurate dynamic channel estimation based on predicted array response vectors without increasing the pilot overhead. Simulation results demonstrate that our proposed approach can offer precise channel estimation with significantly reduced training overhead. |
doi_str_mv | 10.1109/ACCESS.2024.3445528 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3098888012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10638553</ieee_id><doaj_id>oai_doaj_org_article_1ce60acc7f5f49f3b6599904df911b0b</doaj_id><sourcerecordid>3098888012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-cc7b732bb4e9a262cf711d5526eb38323ce671d38466e4734458b844b942692c3</originalsourceid><addsrcrecordid>eNpNUUtLxDAQLqKgqL9ADwHPXfNq2nhbyqoLguD6OMYknWiWttG0K_jvzW5FnMsMw_eY4cuyM4JnhGB5Oa_rxWo1o5jyGeO8KGi1lx1RImTOCib2_82H2ekwrHGqKq2K8ih7fQi6GXwDaNmP0Lb-DXoLV2jhnLce-hHV77rvoUWLYfSdHn3okQsRLR9W-TzxGtR1L_oL0DO8e7tpdUR16LpN7-0OfJIdON0OcPrbj7On68VjfZvf3d8s6_ldbinnY25taUpGjeEgNRXUupKQJv0iwLCKUWZBlKRhFRcCeLn9szIV50ZyKiS17DhbTrpN0Gv1EdOt8VsF7dVuEeKb0nH0tgVFkhbWydEVjkvHjCiklJg3ThJisElaF5PWRwyfGxhGtQ6b2KfzFcOySoUJTSg2oWwMwxDB_bkSrLbJqCkZtU1G_SaTWOcTywPAP4ZgVVEw9gOxuIjx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098888012</pqid></control><display><type>article</type><title>Roadside Intelligence: Efficient Channel Estimation for IRS-Aided mmWave Vehicular Communication</title><source>IEEE Xplore Open Access Journals</source><creator>Nandan, S. ; Abdul Rahiman, M.</creator><creatorcontrib>Nandan, S. ; Abdul Rahiman, M.</creatorcontrib><description>Fifth-generation(5G) and beyond communication systems, assisted by Intelligent Reflecting Surfaces (IRS), often encounter hindrances such as unreliable connections, high energy usage, and prolonged latency. Channel estimation in IRS-aided systems is challenging in vehicular communication systems with roadside IRS units and fast-moving users. This paper proposes an efficient and low-complex channel estimation strategy for high-speed vehicular mmWave communication systems equipped with roadside IRS. The method consists of two stages, sensing and prediction, which aim to improve efficiency and accuracy under dynamic channel conditions. In the sensing phase, an initial assessment of channel characteristics is estimated by exploiting the sparse nature of the channel. We use the Compressive Sampling Matching Pursuit (CoSaMP) algorithm for accurate estimation with reduced computational complexity. The prediction stage consists of real-time tracking and prediction of the Angle of Arrival (AoA) and the Angle of Departure (AoD) using the Extended Kalman Filter (EKF). This ensures more accurate dynamic channel estimation based on predicted array response vectors without increasing the pilot overhead. Simulation results demonstrate that our proposed approach can offer precise channel estimation with significantly reduced training overhead.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3445528</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Angle of arrival ; Channel estimation ; Communication ; Communications systems ; Complexity ; compressive sensing ; Energy consumption ; Extended Kalman filter ; high mobility ; intelligent reflecting surface ; Matched pursuit ; Millimeter wave communication ; millimeter wave communications ; Millimeter waves ; Predictions ; Real time ; Reconfigurable intelligent surfaces ; Roadsides ; Sensors ; Vehicle dynamics ; Vehicular ad hoc networks ; vehicular communication ; Wireless communication</subject><ispartof>IEEE access, 2024, Vol.12, p.115883-115894</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-cc7b732bb4e9a262cf711d5526eb38323ce671d38466e4734458b844b942692c3</cites><orcidid>0000-0001-7261-3242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10638553$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Nandan, S.</creatorcontrib><creatorcontrib>Abdul Rahiman, M.</creatorcontrib><title>Roadside Intelligence: Efficient Channel Estimation for IRS-Aided mmWave Vehicular Communication</title><title>IEEE access</title><addtitle>Access</addtitle><description>Fifth-generation(5G) and beyond communication systems, assisted by Intelligent Reflecting Surfaces (IRS), often encounter hindrances such as unreliable connections, high energy usage, and prolonged latency. Channel estimation in IRS-aided systems is challenging in vehicular communication systems with roadside IRS units and fast-moving users. This paper proposes an efficient and low-complex channel estimation strategy for high-speed vehicular mmWave communication systems equipped with roadside IRS. The method consists of two stages, sensing and prediction, which aim to improve efficiency and accuracy under dynamic channel conditions. In the sensing phase, an initial assessment of channel characteristics is estimated by exploiting the sparse nature of the channel. We use the Compressive Sampling Matching Pursuit (CoSaMP) algorithm for accurate estimation with reduced computational complexity. The prediction stage consists of real-time tracking and prediction of the Angle of Arrival (AoA) and the Angle of Departure (AoD) using the Extended Kalman Filter (EKF). This ensures more accurate dynamic channel estimation based on predicted array response vectors without increasing the pilot overhead. Simulation results demonstrate that our proposed approach can offer precise channel estimation with significantly reduced training overhead.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Angle of arrival</subject><subject>Channel estimation</subject><subject>Communication</subject><subject>Communications systems</subject><subject>Complexity</subject><subject>compressive sensing</subject><subject>Energy consumption</subject><subject>Extended Kalman filter</subject><subject>high mobility</subject><subject>intelligent reflecting surface</subject><subject>Matched pursuit</subject><subject>Millimeter wave communication</subject><subject>millimeter wave communications</subject><subject>Millimeter waves</subject><subject>Predictions</subject><subject>Real time</subject><subject>Reconfigurable intelligent surfaces</subject><subject>Roadsides</subject><subject>Sensors</subject><subject>Vehicle dynamics</subject><subject>Vehicular ad hoc networks</subject><subject>vehicular communication</subject><subject>Wireless communication</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtLxDAQLqKgqL9ADwHPXfNq2nhbyqoLguD6OMYknWiWttG0K_jvzW5FnMsMw_eY4cuyM4JnhGB5Oa_rxWo1o5jyGeO8KGi1lx1RImTOCib2_82H2ekwrHGqKq2K8ih7fQi6GXwDaNmP0Lb-DXoLV2jhnLce-hHV77rvoUWLYfSdHn3okQsRLR9W-TzxGtR1L_oL0DO8e7tpdUR16LpN7-0OfJIdON0OcPrbj7On68VjfZvf3d8s6_ldbinnY25taUpGjeEgNRXUupKQJv0iwLCKUWZBlKRhFRcCeLn9szIV50ZyKiS17DhbTrpN0Gv1EdOt8VsF7dVuEeKb0nH0tgVFkhbWydEVjkvHjCiklJg3ThJisElaF5PWRwyfGxhGtQ6b2KfzFcOySoUJTSg2oWwMwxDB_bkSrLbJqCkZtU1G_SaTWOcTywPAP4ZgVVEw9gOxuIjx</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Nandan, S.</creator><creator>Abdul Rahiman, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7261-3242</orcidid></search><sort><creationdate>2024</creationdate><title>Roadside Intelligence: Efficient Channel Estimation for IRS-Aided mmWave Vehicular Communication</title><author>Nandan, S. ; Abdul Rahiman, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-cc7b732bb4e9a262cf711d5526eb38323ce671d38466e4734458b844b942692c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Angle of arrival</topic><topic>Channel estimation</topic><topic>Communication</topic><topic>Communications systems</topic><topic>Complexity</topic><topic>compressive sensing</topic><topic>Energy consumption</topic><topic>Extended Kalman filter</topic><topic>high mobility</topic><topic>intelligent reflecting surface</topic><topic>Matched pursuit</topic><topic>Millimeter wave communication</topic><topic>millimeter wave communications</topic><topic>Millimeter waves</topic><topic>Predictions</topic><topic>Real time</topic><topic>Reconfigurable intelligent surfaces</topic><topic>Roadsides</topic><topic>Sensors</topic><topic>Vehicle dynamics</topic><topic>Vehicular ad hoc networks</topic><topic>vehicular communication</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nandan, S.</creatorcontrib><creatorcontrib>Abdul Rahiman, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nandan, S.</au><au>Abdul Rahiman, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roadside Intelligence: Efficient Channel Estimation for IRS-Aided mmWave Vehicular Communication</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>115883</spage><epage>115894</epage><pages>115883-115894</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Fifth-generation(5G) and beyond communication systems, assisted by Intelligent Reflecting Surfaces (IRS), often encounter hindrances such as unreliable connections, high energy usage, and prolonged latency. Channel estimation in IRS-aided systems is challenging in vehicular communication systems with roadside IRS units and fast-moving users. This paper proposes an efficient and low-complex channel estimation strategy for high-speed vehicular mmWave communication systems equipped with roadside IRS. The method consists of two stages, sensing and prediction, which aim to improve efficiency and accuracy under dynamic channel conditions. In the sensing phase, an initial assessment of channel characteristics is estimated by exploiting the sparse nature of the channel. We use the Compressive Sampling Matching Pursuit (CoSaMP) algorithm for accurate estimation with reduced computational complexity. The prediction stage consists of real-time tracking and prediction of the Angle of Arrival (AoA) and the Angle of Departure (AoD) using the Extended Kalman Filter (EKF). This ensures more accurate dynamic channel estimation based on predicted array response vectors without increasing the pilot overhead. Simulation results demonstrate that our proposed approach can offer precise channel estimation with significantly reduced training overhead.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3445528</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7261-3242</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.115883-115894 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3098888012 |
source | IEEE Xplore Open Access Journals |
subjects | Accuracy Algorithms Angle of arrival Channel estimation Communication Communications systems Complexity compressive sensing Energy consumption Extended Kalman filter high mobility intelligent reflecting surface Matched pursuit Millimeter wave communication millimeter wave communications Millimeter waves Predictions Real time Reconfigurable intelligent surfaces Roadsides Sensors Vehicle dynamics Vehicular ad hoc networks vehicular communication Wireless communication |
title | Roadside Intelligence: Efficient Channel Estimation for IRS-Aided mmWave Vehicular Communication |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A02%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roadside%20Intelligence:%20Efficient%20Channel%20Estimation%20for%20IRS-Aided%20mmWave%20Vehicular%20Communication&rft.jtitle=IEEE%20access&rft.au=Nandan,%20S.&rft.date=2024&rft.volume=12&rft.spage=115883&rft.epage=115894&rft.pages=115883-115894&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3445528&rft_dat=%3Cproquest_ieee_%3E3098888012%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-cc7b732bb4e9a262cf711d5526eb38323ce671d38466e4734458b844b942692c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3098888012&rft_id=info:pmid/&rft_ieee_id=10638553&rfr_iscdi=true |