Loading…
Digital stabilization of an IQ modulator in the carrier suppressed single side-band (CS-SSB) mode for atom interferometry
We present an all-digital method for stabilising the phase biases in an electro-optic I/Q modulator for carrier-suppressed single-sideband modulation. Building on the method presented in S. Wald \ea, Appl. Opt. \textbf{62}, 1-7 (2023), we use the Red Pitaya STEMlab 125-14 platform to digitally gener...
Saved in:
Published in: | arXiv.org 2024-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present an all-digital method for stabilising the phase biases in an electro-optic I/Q modulator for carrier-suppressed single-sideband modulation. Building on the method presented in S. Wald \ea, Appl. Opt. \textbf{62}, 1-7 (2023), we use the Red Pitaya STEMlab 125-14 platform to digitally generate and demodulate an auxiliary radio-frequency tone whose beat with the optical carrier probes the I/Q modulator's phase imbalances. We implement a multiple-input, multiple-output integral feedback controller which accounts for unavoidable cross-couplings in the phase biases to lock the error signals at exactly zero where optical power fluctuations have no impact on phase stability. We demonstrate \(>23\,\rm dB\) suppression of the optical carrier relative to the desired sideband at \(+3.4\,\rm GHz\) over a period of \(15\) hours and over temperature variations of \(20^\circ\rm C\). |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2408.16678 |