Loading…

Nonparametric goodness of fit tests for Pareto type-I distribution with complete and censored data

Two new goodness of fit tests for the Pareto type-I distribution for complete and right censored data are proposed using fixed point characterization based on Steins type identity. The asymptotic distributions of the test statistics under both the null and alternative hypotheses are obtained. The pe...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-08
Main Authors: Avhad, Ganesh Vishnu, Lahiri, Ananya, Kattumannil, Sudheesh K
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Avhad, Ganesh Vishnu
Lahiri, Ananya
Kattumannil, Sudheesh K
description Two new goodness of fit tests for the Pareto type-I distribution for complete and right censored data are proposed using fixed point characterization based on Steins type identity. The asymptotic distributions of the test statistics under both the null and alternative hypotheses are obtained. The performance of the proposed tests is evaluated and compared with existing tests through a Monte Carlo simulation experiment. The newly proposed tests exhibit greater power than existing tests for the Pareto type-I distribution. Finally, the methodology is applied to real-world data sets.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3098944344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098944344</sourcerecordid><originalsourceid>FETCH-proquest_journals_30989443443</originalsourceid><addsrcrecordid>eNqNjUEKwjAQRYMgKNo7DLgu1KTVuhZFN-LCvaTNVCM2UzNTxNvbhQcQPrzFe_BHaqqNWaZlrvVEJcyPLMv0aq2LwkxVdaLQ2WhblOhruBG5gMxADTReQJCFoaEIZxtRCOTTYXoE53noq148BXh7uUNNbfdEQbDBQY2BKaIDZ8XO1bixT8bkx5la7HeX7SHtIr364eD6oD6GQV1Ntik3eW6G_Vd9AdP7RiY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098944344</pqid></control><display><type>article</type><title>Nonparametric goodness of fit tests for Pareto type-I distribution with complete and censored data</title><source>Publicly Available Content (ProQuest)</source><creator>Avhad, Ganesh Vishnu ; Lahiri, Ananya ; Kattumannil, Sudheesh K</creator><creatorcontrib>Avhad, Ganesh Vishnu ; Lahiri, Ananya ; Kattumannil, Sudheesh K</creatorcontrib><description>Two new goodness of fit tests for the Pareto type-I distribution for complete and right censored data are proposed using fixed point characterization based on Steins type identity. The asymptotic distributions of the test statistics under both the null and alternative hypotheses are obtained. The performance of the proposed tests is evaluated and compared with existing tests through a Monte Carlo simulation experiment. The newly proposed tests exhibit greater power than existing tests for the Pareto type-I distribution. Finally, the methodology is applied to real-world data sets.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic methods ; Fixed points (mathematics) ; Goodness of fit ; Monte Carlo simulation ; Statistical tests</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3098944344?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Avhad, Ganesh Vishnu</creatorcontrib><creatorcontrib>Lahiri, Ananya</creatorcontrib><creatorcontrib>Kattumannil, Sudheesh K</creatorcontrib><title>Nonparametric goodness of fit tests for Pareto type-I distribution with complete and censored data</title><title>arXiv.org</title><description>Two new goodness of fit tests for the Pareto type-I distribution for complete and right censored data are proposed using fixed point characterization based on Steins type identity. The asymptotic distributions of the test statistics under both the null and alternative hypotheses are obtained. The performance of the proposed tests is evaluated and compared with existing tests through a Monte Carlo simulation experiment. The newly proposed tests exhibit greater power than existing tests for the Pareto type-I distribution. Finally, the methodology is applied to real-world data sets.</description><subject>Asymptotic methods</subject><subject>Fixed points (mathematics)</subject><subject>Goodness of fit</subject><subject>Monte Carlo simulation</subject><subject>Statistical tests</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjUEKwjAQRYMgKNo7DLgu1KTVuhZFN-LCvaTNVCM2UzNTxNvbhQcQPrzFe_BHaqqNWaZlrvVEJcyPLMv0aq2LwkxVdaLQ2WhblOhruBG5gMxADTReQJCFoaEIZxtRCOTTYXoE53noq148BXh7uUNNbfdEQbDBQY2BKaIDZ8XO1bixT8bkx5la7HeX7SHtIr364eD6oD6GQV1Ntik3eW6G_Vd9AdP7RiY</recordid><startdate>20240829</startdate><enddate>20240829</enddate><creator>Avhad, Ganesh Vishnu</creator><creator>Lahiri, Ananya</creator><creator>Kattumannil, Sudheesh K</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240829</creationdate><title>Nonparametric goodness of fit tests for Pareto type-I distribution with complete and censored data</title><author>Avhad, Ganesh Vishnu ; Lahiri, Ananya ; Kattumannil, Sudheesh K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30989443443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic methods</topic><topic>Fixed points (mathematics)</topic><topic>Goodness of fit</topic><topic>Monte Carlo simulation</topic><topic>Statistical tests</topic><toplevel>online_resources</toplevel><creatorcontrib>Avhad, Ganesh Vishnu</creatorcontrib><creatorcontrib>Lahiri, Ananya</creatorcontrib><creatorcontrib>Kattumannil, Sudheesh K</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avhad, Ganesh Vishnu</au><au>Lahiri, Ananya</au><au>Kattumannil, Sudheesh K</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Nonparametric goodness of fit tests for Pareto type-I distribution with complete and censored data</atitle><jtitle>arXiv.org</jtitle><date>2024-08-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Two new goodness of fit tests for the Pareto type-I distribution for complete and right censored data are proposed using fixed point characterization based on Steins type identity. The asymptotic distributions of the test statistics under both the null and alternative hypotheses are obtained. The performance of the proposed tests is evaluated and compared with existing tests through a Monte Carlo simulation experiment. The newly proposed tests exhibit greater power than existing tests for the Pareto type-I distribution. Finally, the methodology is applied to real-world data sets.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3098944344
source Publicly Available Content (ProQuest)
subjects Asymptotic methods
Fixed points (mathematics)
Goodness of fit
Monte Carlo simulation
Statistical tests
title Nonparametric goodness of fit tests for Pareto type-I distribution with complete and censored data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Nonparametric%20goodness%20of%20fit%20tests%20for%20Pareto%20type-I%20distribution%20with%20complete%20and%20censored%20data&rft.jtitle=arXiv.org&rft.au=Avhad,%20Ganesh%20Vishnu&rft.date=2024-08-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3098944344%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30989443443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3098944344&rft_id=info:pmid/&rfr_iscdi=true