Loading…
Scrap polymeric materials as hybrid energy harvesters
Producing biomechanical energy from waste polymer has attracted lot of interest in this digital era as a number of benefits can be accounted for this including: (i) addressing challenges in the disposal of waste materials, and pollution (air, water, soil) caused by their presence in the atmosphere (...
Saved in:
Published in: | Applied nanoscience 2024, Vol.14 (9), p.955-971 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Producing biomechanical energy from waste polymer has attracted lot of interest in this digital era as a number of benefits can be accounted for this including: (i) addressing challenges in the disposal of waste materials, and pollution (air, water, soil) caused by their presence in the atmosphere (ii) ensuring clean and affordable energy at low cost (iii) avoiding the hassle of constant battery replacement, charging, and long wires for charging, and so on. Here, the authors aim at the recycling of waste materials, especially polymers, keeping the 4R’s of effective waste management in mind. Energy harvesters based on triboelectric/piezoelectric effects convert energy from vibrational waves and material deformations into electricity. A hybrid energy harvester is constructed, with waste polymer to act as the tribo-active layer, nanomaterial coating is applied to induce piezoelectricity and Al as the electrode. The energy harvester demonstrated an output voltage enhancement of 266.166% for qualitative input conditions and 375.374%, 337.33%, and 287.308% for quantized input conditions (1 N, 1.5 N, 3 N respectively) when compared with the performance of raw waste polymer-based energy harvester. The developed device could drive low-power portable electronic devices, such as LEDs, calculator, digital watch, thermometer and pedometer. |
---|---|
ISSN: | 2190-5509 2190-5517 |
DOI: | 10.1007/s13204-024-03060-z |