Loading…

Corrosion behavior of two Cu‐based shape memory alloys in NaCl solution: An electrochemical study

The corrosion behavior of two different Cu–Al–Mn–Ni alloys, pseudoelastic and pseudoplastic, was studied in a 0.6 M sodium chloride aqueous solution by monitoring the open circuit potential for 100 h and characterizing the resulting corrosion products. Electrochemical impedance spectroscopy analysis...

Full description

Saved in:
Bibliographic Details
Published in:Materials and corrosion 2024-09, Vol.75 (9), p.1155-1172
Main Authors: Spotorno, Roberto, Fracchia, Elisa, Krancher, Christian, Krieg, Romina, Theiß, Ralf, Dültgen, Peter, Pezzana, Francesco Marco, Gobber, Federico Simone, Grande, Marco Actis, Piccardo, Paolo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2727-79858f68c6ad0f402aa80f629fee63eec737fc9afe61115f72cccf6c15f3d95b3
container_end_page 1172
container_issue 9
container_start_page 1155
container_title Materials and corrosion
container_volume 75
creator Spotorno, Roberto
Fracchia, Elisa
Krancher, Christian
Krieg, Romina
Theiß, Ralf
Dültgen, Peter
Pezzana, Francesco Marco
Gobber, Federico Simone
Grande, Marco Actis
Piccardo, Paolo
description The corrosion behavior of two different Cu–Al–Mn–Ni alloys, pseudoelastic and pseudoplastic, was studied in a 0.6 M sodium chloride aqueous solution by monitoring the open circuit potential for 100 h and characterizing the resulting corrosion products. Electrochemical impedance spectroscopy analysis detected three processes related to the electrochemical double layer, a passive film and a diffusive contribution associated with the dissolution/precipitation of corrosion products. Potentiodynamic scans revealed a cathodically controlled corrosion mechanism and the presence of active–passive behavior at anodic potentials for both alloys studied. Polarization of the samples at selected potentials in the anodic branch allowed the investigation of the reactions involved, highlighting an improved corrosion resistance of the pseudoelastic alloy. The corrosion rates of the pseudoelastic and pseudoplastic alloys, after 100 h of immersion, were determined to be 0.007 and 0.011 mmpy, respectively. The post‐experiment characterization was carried out by means of scanning electron microscopy, micro‐Raman spectroscopy and X‐ray diffraction, supporting the electrochemical results. Corrosion resistance was studied in two Cu–Al–Mn–Ni shape memory alloys, one pseudoplastic and one pseudoelastic, through electrochemical and post‐experiment characterization. The corrosion products covered the samples over 60 h of immersion and the martensitic structure reduced the corrosion resistance in the pseudoplastic alloy.
doi_str_mv 10.1002/maco.202314227
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3099424734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099424734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2727-79858f68c6ad0f402aa80f629fee63eec737fc9afe61115f72cccf6c15f3d95b3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMltiTvFX4pitiviSCl1gtlznrKZK4mInVNn4CfxGfgmpimBkupPufe50D0KXlMwoIey6MdbPGGGcCsbkEZrQlNFEUJkdowlRQiYppfIUncW4IYRSxcUE2cKH4GPlW7yCtXmvfMDe4W7ncdF_fXyuTIQSx7XZAm6g8WHApq79EHHV4mdT1Dj6uu9G_gbPWww12C54u4amsmYcdn05nKMTZ-oIFz91il7vbl-Kh2SxvH8s5ovEMslkIlWe5i7LbWZK4gRhxuTEZUw5gIwDWMmls8o4yCilqZPMWusyO7a8VOmKT9HVYe82-LceYqc3vg_teFJzopRgQnIxpmaHlB3_jgGc3oaqMWHQlOi9SL0XqX9FjoA6ALuqhuGftH6aF8s_9htGjXmG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099424734</pqid></control><display><type>article</type><title>Corrosion behavior of two Cu‐based shape memory alloys in NaCl solution: An electrochemical study</title><source>Wiley</source><creator>Spotorno, Roberto ; Fracchia, Elisa ; Krancher, Christian ; Krieg, Romina ; Theiß, Ralf ; Dültgen, Peter ; Pezzana, Francesco Marco ; Gobber, Federico Simone ; Grande, Marco Actis ; Piccardo, Paolo</creator><creatorcontrib>Spotorno, Roberto ; Fracchia, Elisa ; Krancher, Christian ; Krieg, Romina ; Theiß, Ralf ; Dültgen, Peter ; Pezzana, Francesco Marco ; Gobber, Federico Simone ; Grande, Marco Actis ; Piccardo, Paolo</creatorcontrib><description>The corrosion behavior of two different Cu–Al–Mn–Ni alloys, pseudoelastic and pseudoplastic, was studied in a 0.6 M sodium chloride aqueous solution by monitoring the open circuit potential for 100 h and characterizing the resulting corrosion products. Electrochemical impedance spectroscopy analysis detected three processes related to the electrochemical double layer, a passive film and a diffusive contribution associated with the dissolution/precipitation of corrosion products. Potentiodynamic scans revealed a cathodically controlled corrosion mechanism and the presence of active–passive behavior at anodic potentials for both alloys studied. Polarization of the samples at selected potentials in the anodic branch allowed the investigation of the reactions involved, highlighting an improved corrosion resistance of the pseudoelastic alloy. The corrosion rates of the pseudoelastic and pseudoplastic alloys, after 100 h of immersion, were determined to be 0.007 and 0.011 mmpy, respectively. The post‐experiment characterization was carried out by means of scanning electron microscopy, micro‐Raman spectroscopy and X‐ray diffraction, supporting the electrochemical results. Corrosion resistance was studied in two Cu–Al–Mn–Ni shape memory alloys, one pseudoplastic and one pseudoelastic, through electrochemical and post‐experiment characterization. The corrosion products covered the samples over 60 h of immersion and the martensitic structure reduced the corrosion resistance in the pseudoplastic alloy.</description><identifier>ISSN: 0947-5117</identifier><identifier>EISSN: 1521-4176</identifier><identifier>DOI: 10.1002/maco.202314227</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodic dissolution ; Anodic polarization ; Aqueous solutions ; Chemical reactions ; Copper ; Corrosion ; Corrosion mechanisms ; Corrosion potential ; Corrosion prevention ; Corrosion products ; Corrosion rate ; Corrosion resistance ; Corrosion resistant alloys ; Corrosion tests ; Cu‐based alloys ; Dissolution ; EIS ; Electrochemical impedance spectroscopy ; Electrode polarization ; martensite ; micro‐Raman spectroscopy ; Open circuit voltage ; polarization ; Pseudoplasticity ; Raman spectroscopy ; Shape memory alloys ; Sodium chloride ; Spectrum analysis</subject><ispartof>Materials and corrosion, 2024-09, Vol.75 (9), p.1155-1172</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2727-79858f68c6ad0f402aa80f629fee63eec737fc9afe61115f72cccf6c15f3d95b3</cites><orcidid>0000-0002-7610-5197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Spotorno, Roberto</creatorcontrib><creatorcontrib>Fracchia, Elisa</creatorcontrib><creatorcontrib>Krancher, Christian</creatorcontrib><creatorcontrib>Krieg, Romina</creatorcontrib><creatorcontrib>Theiß, Ralf</creatorcontrib><creatorcontrib>Dültgen, Peter</creatorcontrib><creatorcontrib>Pezzana, Francesco Marco</creatorcontrib><creatorcontrib>Gobber, Federico Simone</creatorcontrib><creatorcontrib>Grande, Marco Actis</creatorcontrib><creatorcontrib>Piccardo, Paolo</creatorcontrib><title>Corrosion behavior of two Cu‐based shape memory alloys in NaCl solution: An electrochemical study</title><title>Materials and corrosion</title><description>The corrosion behavior of two different Cu–Al–Mn–Ni alloys, pseudoelastic and pseudoplastic, was studied in a 0.6 M sodium chloride aqueous solution by monitoring the open circuit potential for 100 h and characterizing the resulting corrosion products. Electrochemical impedance spectroscopy analysis detected three processes related to the electrochemical double layer, a passive film and a diffusive contribution associated with the dissolution/precipitation of corrosion products. Potentiodynamic scans revealed a cathodically controlled corrosion mechanism and the presence of active–passive behavior at anodic potentials for both alloys studied. Polarization of the samples at selected potentials in the anodic branch allowed the investigation of the reactions involved, highlighting an improved corrosion resistance of the pseudoelastic alloy. The corrosion rates of the pseudoelastic and pseudoplastic alloys, after 100 h of immersion, were determined to be 0.007 and 0.011 mmpy, respectively. The post‐experiment characterization was carried out by means of scanning electron microscopy, micro‐Raman spectroscopy and X‐ray diffraction, supporting the electrochemical results. Corrosion resistance was studied in two Cu–Al–Mn–Ni shape memory alloys, one pseudoplastic and one pseudoelastic, through electrochemical and post‐experiment characterization. The corrosion products covered the samples over 60 h of immersion and the martensitic structure reduced the corrosion resistance in the pseudoplastic alloy.</description><subject>Anodic dissolution</subject><subject>Anodic polarization</subject><subject>Aqueous solutions</subject><subject>Chemical reactions</subject><subject>Copper</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Corrosion potential</subject><subject>Corrosion prevention</subject><subject>Corrosion products</subject><subject>Corrosion rate</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant alloys</subject><subject>Corrosion tests</subject><subject>Cu‐based alloys</subject><subject>Dissolution</subject><subject>EIS</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrode polarization</subject><subject>martensite</subject><subject>micro‐Raman spectroscopy</subject><subject>Open circuit voltage</subject><subject>polarization</subject><subject>Pseudoplasticity</subject><subject>Raman spectroscopy</subject><subject>Shape memory alloys</subject><subject>Sodium chloride</subject><subject>Spectrum analysis</subject><issn>0947-5117</issn><issn>1521-4176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqWwMltiTvFX4pitiviSCl1gtlznrKZK4mInVNn4CfxGfgmpimBkupPufe50D0KXlMwoIey6MdbPGGGcCsbkEZrQlNFEUJkdowlRQiYppfIUncW4IYRSxcUE2cKH4GPlW7yCtXmvfMDe4W7ncdF_fXyuTIQSx7XZAm6g8WHApq79EHHV4mdT1Dj6uu9G_gbPWww12C54u4amsmYcdn05nKMTZ-oIFz91il7vbl-Kh2SxvH8s5ovEMslkIlWe5i7LbWZK4gRhxuTEZUw5gIwDWMmls8o4yCilqZPMWusyO7a8VOmKT9HVYe82-LceYqc3vg_teFJzopRgQnIxpmaHlB3_jgGc3oaqMWHQlOi9SL0XqX9FjoA6ALuqhuGftH6aF8s_9htGjXmG</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Spotorno, Roberto</creator><creator>Fracchia, Elisa</creator><creator>Krancher, Christian</creator><creator>Krieg, Romina</creator><creator>Theiß, Ralf</creator><creator>Dültgen, Peter</creator><creator>Pezzana, Francesco Marco</creator><creator>Gobber, Federico Simone</creator><creator>Grande, Marco Actis</creator><creator>Piccardo, Paolo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7610-5197</orcidid></search><sort><creationdate>202409</creationdate><title>Corrosion behavior of two Cu‐based shape memory alloys in NaCl solution: An electrochemical study</title><author>Spotorno, Roberto ; Fracchia, Elisa ; Krancher, Christian ; Krieg, Romina ; Theiß, Ralf ; Dültgen, Peter ; Pezzana, Francesco Marco ; Gobber, Federico Simone ; Grande, Marco Actis ; Piccardo, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2727-79858f68c6ad0f402aa80f629fee63eec737fc9afe61115f72cccf6c15f3d95b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodic dissolution</topic><topic>Anodic polarization</topic><topic>Aqueous solutions</topic><topic>Chemical reactions</topic><topic>Copper</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Corrosion potential</topic><topic>Corrosion prevention</topic><topic>Corrosion products</topic><topic>Corrosion rate</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant alloys</topic><topic>Corrosion tests</topic><topic>Cu‐based alloys</topic><topic>Dissolution</topic><topic>EIS</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrode polarization</topic><topic>martensite</topic><topic>micro‐Raman spectroscopy</topic><topic>Open circuit voltage</topic><topic>polarization</topic><topic>Pseudoplasticity</topic><topic>Raman spectroscopy</topic><topic>Shape memory alloys</topic><topic>Sodium chloride</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spotorno, Roberto</creatorcontrib><creatorcontrib>Fracchia, Elisa</creatorcontrib><creatorcontrib>Krancher, Christian</creatorcontrib><creatorcontrib>Krieg, Romina</creatorcontrib><creatorcontrib>Theiß, Ralf</creatorcontrib><creatorcontrib>Dültgen, Peter</creatorcontrib><creatorcontrib>Pezzana, Francesco Marco</creatorcontrib><creatorcontrib>Gobber, Federico Simone</creatorcontrib><creatorcontrib>Grande, Marco Actis</creatorcontrib><creatorcontrib>Piccardo, Paolo</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials and corrosion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spotorno, Roberto</au><au>Fracchia, Elisa</au><au>Krancher, Christian</au><au>Krieg, Romina</au><au>Theiß, Ralf</au><au>Dültgen, Peter</au><au>Pezzana, Francesco Marco</au><au>Gobber, Federico Simone</au><au>Grande, Marco Actis</au><au>Piccardo, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion behavior of two Cu‐based shape memory alloys in NaCl solution: An electrochemical study</atitle><jtitle>Materials and corrosion</jtitle><date>2024-09</date><risdate>2024</risdate><volume>75</volume><issue>9</issue><spage>1155</spage><epage>1172</epage><pages>1155-1172</pages><issn>0947-5117</issn><eissn>1521-4176</eissn><abstract>The corrosion behavior of two different Cu–Al–Mn–Ni alloys, pseudoelastic and pseudoplastic, was studied in a 0.6 M sodium chloride aqueous solution by monitoring the open circuit potential for 100 h and characterizing the resulting corrosion products. Electrochemical impedance spectroscopy analysis detected three processes related to the electrochemical double layer, a passive film and a diffusive contribution associated with the dissolution/precipitation of corrosion products. Potentiodynamic scans revealed a cathodically controlled corrosion mechanism and the presence of active–passive behavior at anodic potentials for both alloys studied. Polarization of the samples at selected potentials in the anodic branch allowed the investigation of the reactions involved, highlighting an improved corrosion resistance of the pseudoelastic alloy. The corrosion rates of the pseudoelastic and pseudoplastic alloys, after 100 h of immersion, were determined to be 0.007 and 0.011 mmpy, respectively. The post‐experiment characterization was carried out by means of scanning electron microscopy, micro‐Raman spectroscopy and X‐ray diffraction, supporting the electrochemical results. Corrosion resistance was studied in two Cu–Al–Mn–Ni shape memory alloys, one pseudoplastic and one pseudoelastic, through electrochemical and post‐experiment characterization. The corrosion products covered the samples over 60 h of immersion and the martensitic structure reduced the corrosion resistance in the pseudoplastic alloy.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/maco.202314227</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7610-5197</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-5117
ispartof Materials and corrosion, 2024-09, Vol.75 (9), p.1155-1172
issn 0947-5117
1521-4176
language eng
recordid cdi_proquest_journals_3099424734
source Wiley
subjects Anodic dissolution
Anodic polarization
Aqueous solutions
Chemical reactions
Copper
Corrosion
Corrosion mechanisms
Corrosion potential
Corrosion prevention
Corrosion products
Corrosion rate
Corrosion resistance
Corrosion resistant alloys
Corrosion tests
Cu‐based alloys
Dissolution
EIS
Electrochemical impedance spectroscopy
Electrode polarization
martensite
micro‐Raman spectroscopy
Open circuit voltage
polarization
Pseudoplasticity
Raman spectroscopy
Shape memory alloys
Sodium chloride
Spectrum analysis
title Corrosion behavior of two Cu‐based shape memory alloys in NaCl solution: An electrochemical study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20behavior%20of%20two%20Cu%E2%80%90based%20shape%20memory%20alloys%20in%20NaCl%20solution:%20An%20electrochemical%20study&rft.jtitle=Materials%20and%20corrosion&rft.au=Spotorno,%20Roberto&rft.date=2024-09&rft.volume=75&rft.issue=9&rft.spage=1155&rft.epage=1172&rft.pages=1155-1172&rft.issn=0947-5117&rft.eissn=1521-4176&rft_id=info:doi/10.1002/maco.202314227&rft_dat=%3Cproquest_cross%3E3099424734%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2727-79858f68c6ad0f402aa80f629fee63eec737fc9afe61115f72cccf6c15f3d95b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3099424734&rft_id=info:pmid/&rfr_iscdi=true