Loading…
Adaptive Top-K in SGD for Communication-Efficient Distributed Learning in Multi-Robot Collaboration
Distributed stochastic gradient descent (D-SGD) with gradient compression has become a popular communication-efficient solution for accelerating optimization procedures in distributed learning systems like multi-robot systems. One commonly used method for gradient compression is Top-K sparsification...
Saved in:
Published in: | IEEE journal of selected topics in signal processing 2024-04, Vol.18 (3), p.487-501 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c247t-d30d3e5344c271ea676759449b9f02eca679ba5924c31ed78b995de10a311b083 |
container_end_page | 501 |
container_issue | 3 |
container_start_page | 487 |
container_title | IEEE journal of selected topics in signal processing |
container_volume | 18 |
creator | Ruan, Mengzhe Yan, Guangfeng Xiao, Yuanzhang Song, Linqi Xu, Weitao |
description | Distributed stochastic gradient descent (D-SGD) with gradient compression has become a popular communication-efficient solution for accelerating optimization procedures in distributed learning systems like multi-robot systems. One commonly used method for gradient compression is Top-K sparsification, which sparsifies the gradients by a fixed degree during model training. However, there has been a lack of an adaptive approach with a systematic treatment and analysis to adjust the sparsification degree to maximize the potential of the model's performance or training speed. This paper proposes a novel adaptive Top-K in Stochastic Gradient Descent framework that enables an adaptive degree of sparsification for each gradient descent step to optimize the convergence performance by balancing the trade-off between communication cost and convergence error with respect to the norm of gradients and the communication budget. Firstly, an upper bound of convergence error is derived for the adaptive sparsification scheme and the loss function. Secondly, we consider communication budget constraints and propose an optimization formulation for minimizing the deep model's convergence error under such constraints. We obtain an enhanced compression algorithm that significantly improves model accuracy under given communication budget constraints. Finally, we conduct numerical experiments on general image classification tasks using the MNIST, CIFAR-10 datasets. For the multi-robot collaboration tasks, we choose the object detection task on the PASCAL VOC dataset. The results demonstrate that the proposed adaptive Top-K algorithm in SGD achieves a significantly better convergence rate compared to state-of-the-art methods, even after considering error compensation. |
doi_str_mv | 10.1109/JSTSP.2024.3381373 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3100618450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10493123</ieee_id><sourcerecordid>3100618450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-d30d3e5344c271ea676759449b9f02eca679ba5924c31ed78b995de10a311b083</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwA4hFJNYuHj-SeFm1UB5FIFrWluM4yFUbB8dB4u9J2i5YzdXonhnpIHQNZAJA5N3zar16n1BC-YSxHFjGTtAIJAdMeM5Ph8wo5kKwc3TRthtCRJYCHyEzLXUT3Y9N1r7BL4mrk9VinlQ-JDO_23W1Mzo6X-P7qnLG2Tomc9fG4Iou2jJZWh1qV38N3Gu3jQ5_-MLHnt1udeHDnr1EZ5XetvbqOMfo8-F-PXvEy7fF02y6xIbyLOKSkZJZwTg3NAOr0yzNhORcFrIi1Jp-IQstJOWGgS2zvJBSlBaIZgAFydkY3R7uNsF_d7aNauO7UPcvFQNCUsi5IH2LHlom-LYNtlJNcDsdfhUQNchUe5lqkKmOMnvo5gA5a-0_gEsGlLE_BJdwLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100618450</pqid></control><display><type>article</type><title>Adaptive Top-K in SGD for Communication-Efficient Distributed Learning in Multi-Robot Collaboration</title><source>IEEE Xplore (Online service)</source><creator>Ruan, Mengzhe ; Yan, Guangfeng ; Xiao, Yuanzhang ; Song, Linqi ; Xu, Weitao</creator><creatorcontrib>Ruan, Mengzhe ; Yan, Guangfeng ; Xiao, Yuanzhang ; Song, Linqi ; Xu, Weitao</creatorcontrib><description>Distributed stochastic gradient descent (D-SGD) with gradient compression has become a popular communication-efficient solution for accelerating optimization procedures in distributed learning systems like multi-robot systems. One commonly used method for gradient compression is Top-K sparsification, which sparsifies the gradients by a fixed degree during model training. However, there has been a lack of an adaptive approach with a systematic treatment and analysis to adjust the sparsification degree to maximize the potential of the model's performance or training speed. This paper proposes a novel adaptive Top-K in Stochastic Gradient Descent framework that enables an adaptive degree of sparsification for each gradient descent step to optimize the convergence performance by balancing the trade-off between communication cost and convergence error with respect to the norm of gradients and the communication budget. Firstly, an upper bound of convergence error is derived for the adaptive sparsification scheme and the loss function. Secondly, we consider communication budget constraints and propose an optimization formulation for minimizing the deep model's convergence error under such constraints. We obtain an enhanced compression algorithm that significantly improves model accuracy under given communication budget constraints. Finally, we conduct numerical experiments on general image classification tasks using the MNIST, CIFAR-10 datasets. For the multi-robot collaboration tasks, we choose the object detection task on the PASCAL VOC dataset. The results demonstrate that the proposed adaptive Top-K algorithm in SGD achieves a significantly better convergence rate compared to state-of-the-art methods, even after considering error compensation.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2024.3381373</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Adaptive algorithms ; Budgets ; Collaboration ; Communication ; communication-efficient ; Computer aided instruction ; Constraints ; Convergence ; Cooperation ; Cost analysis ; Datasets ; Distance learning ; Distributed learning ; Error analysis ; Error compensation ; gradient sparsification ; Image classification ; Image compression ; Image enhancement ; Learning ; multi-robot collaboration ; Multiple robots ; Object recognition ; Optimization ; Quantization (signal) ; Robots ; Training ; Upper bounds</subject><ispartof>IEEE journal of selected topics in signal processing, 2024-04, Vol.18 (3), p.487-501</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-d30d3e5344c271ea676759449b9f02eca679ba5924c31ed78b995de10a311b083</cites><orcidid>0009-0008-0458-5751 ; 0000-0003-2756-4984 ; 0000-0002-5821-8569 ; 0000-0001-9741-5912 ; 0000-0002-0936-9467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10493123$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ruan, Mengzhe</creatorcontrib><creatorcontrib>Yan, Guangfeng</creatorcontrib><creatorcontrib>Xiao, Yuanzhang</creatorcontrib><creatorcontrib>Song, Linqi</creatorcontrib><creatorcontrib>Xu, Weitao</creatorcontrib><title>Adaptive Top-K in SGD for Communication-Efficient Distributed Learning in Multi-Robot Collaboration</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>Distributed stochastic gradient descent (D-SGD) with gradient compression has become a popular communication-efficient solution for accelerating optimization procedures in distributed learning systems like multi-robot systems. One commonly used method for gradient compression is Top-K sparsification, which sparsifies the gradients by a fixed degree during model training. However, there has been a lack of an adaptive approach with a systematic treatment and analysis to adjust the sparsification degree to maximize the potential of the model's performance or training speed. This paper proposes a novel adaptive Top-K in Stochastic Gradient Descent framework that enables an adaptive degree of sparsification for each gradient descent step to optimize the convergence performance by balancing the trade-off between communication cost and convergence error with respect to the norm of gradients and the communication budget. Firstly, an upper bound of convergence error is derived for the adaptive sparsification scheme and the loss function. Secondly, we consider communication budget constraints and propose an optimization formulation for minimizing the deep model's convergence error under such constraints. We obtain an enhanced compression algorithm that significantly improves model accuracy under given communication budget constraints. Finally, we conduct numerical experiments on general image classification tasks using the MNIST, CIFAR-10 datasets. For the multi-robot collaboration tasks, we choose the object detection task on the PASCAL VOC dataset. The results demonstrate that the proposed adaptive Top-K algorithm in SGD achieves a significantly better convergence rate compared to state-of-the-art methods, even after considering error compensation.</description><subject>Adaptation models</subject><subject>Adaptive algorithms</subject><subject>Budgets</subject><subject>Collaboration</subject><subject>Communication</subject><subject>communication-efficient</subject><subject>Computer aided instruction</subject><subject>Constraints</subject><subject>Convergence</subject><subject>Cooperation</subject><subject>Cost analysis</subject><subject>Datasets</subject><subject>Distance learning</subject><subject>Distributed learning</subject><subject>Error analysis</subject><subject>Error compensation</subject><subject>gradient sparsification</subject><subject>Image classification</subject><subject>Image compression</subject><subject>Image enhancement</subject><subject>Learning</subject><subject>multi-robot collaboration</subject><subject>Multiple robots</subject><subject>Object recognition</subject><subject>Optimization</subject><subject>Quantization (signal)</subject><subject>Robots</subject><subject>Training</subject><subject>Upper bounds</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EEqXwA4hFJNYuHj-SeFm1UB5FIFrWluM4yFUbB8dB4u9J2i5YzdXonhnpIHQNZAJA5N3zar16n1BC-YSxHFjGTtAIJAdMeM5Ph8wo5kKwc3TRthtCRJYCHyEzLXUT3Y9N1r7BL4mrk9VinlQ-JDO_23W1Mzo6X-P7qnLG2Tomc9fG4Iou2jJZWh1qV38N3Gu3jQ5_-MLHnt1udeHDnr1EZ5XetvbqOMfo8-F-PXvEy7fF02y6xIbyLOKSkZJZwTg3NAOr0yzNhORcFrIi1Jp-IQstJOWGgS2zvJBSlBaIZgAFydkY3R7uNsF_d7aNauO7UPcvFQNCUsi5IH2LHlom-LYNtlJNcDsdfhUQNchUe5lqkKmOMnvo5gA5a-0_gEsGlLE_BJdwLw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Ruan, Mengzhe</creator><creator>Yan, Guangfeng</creator><creator>Xiao, Yuanzhang</creator><creator>Song, Linqi</creator><creator>Xu, Weitao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0008-0458-5751</orcidid><orcidid>https://orcid.org/0000-0003-2756-4984</orcidid><orcidid>https://orcid.org/0000-0002-5821-8569</orcidid><orcidid>https://orcid.org/0000-0001-9741-5912</orcidid><orcidid>https://orcid.org/0000-0002-0936-9467</orcidid></search><sort><creationdate>20240401</creationdate><title>Adaptive Top-K in SGD for Communication-Efficient Distributed Learning in Multi-Robot Collaboration</title><author>Ruan, Mengzhe ; Yan, Guangfeng ; Xiao, Yuanzhang ; Song, Linqi ; Xu, Weitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-d30d3e5344c271ea676759449b9f02eca679ba5924c31ed78b995de10a311b083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Adaptive algorithms</topic><topic>Budgets</topic><topic>Collaboration</topic><topic>Communication</topic><topic>communication-efficient</topic><topic>Computer aided instruction</topic><topic>Constraints</topic><topic>Convergence</topic><topic>Cooperation</topic><topic>Cost analysis</topic><topic>Datasets</topic><topic>Distance learning</topic><topic>Distributed learning</topic><topic>Error analysis</topic><topic>Error compensation</topic><topic>gradient sparsification</topic><topic>Image classification</topic><topic>Image compression</topic><topic>Image enhancement</topic><topic>Learning</topic><topic>multi-robot collaboration</topic><topic>Multiple robots</topic><topic>Object recognition</topic><topic>Optimization</topic><topic>Quantization (signal)</topic><topic>Robots</topic><topic>Training</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruan, Mengzhe</creatorcontrib><creatorcontrib>Yan, Guangfeng</creatorcontrib><creatorcontrib>Xiao, Yuanzhang</creatorcontrib><creatorcontrib>Song, Linqi</creatorcontrib><creatorcontrib>Xu, Weitao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruan, Mengzhe</au><au>Yan, Guangfeng</au><au>Xiao, Yuanzhang</au><au>Song, Linqi</au><au>Xu, Weitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Top-K in SGD for Communication-Efficient Distributed Learning in Multi-Robot Collaboration</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>18</volume><issue>3</issue><spage>487</spage><epage>501</epage><pages>487-501</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>Distributed stochastic gradient descent (D-SGD) with gradient compression has become a popular communication-efficient solution for accelerating optimization procedures in distributed learning systems like multi-robot systems. One commonly used method for gradient compression is Top-K sparsification, which sparsifies the gradients by a fixed degree during model training. However, there has been a lack of an adaptive approach with a systematic treatment and analysis to adjust the sparsification degree to maximize the potential of the model's performance or training speed. This paper proposes a novel adaptive Top-K in Stochastic Gradient Descent framework that enables an adaptive degree of sparsification for each gradient descent step to optimize the convergence performance by balancing the trade-off between communication cost and convergence error with respect to the norm of gradients and the communication budget. Firstly, an upper bound of convergence error is derived for the adaptive sparsification scheme and the loss function. Secondly, we consider communication budget constraints and propose an optimization formulation for minimizing the deep model's convergence error under such constraints. We obtain an enhanced compression algorithm that significantly improves model accuracy under given communication budget constraints. Finally, we conduct numerical experiments on general image classification tasks using the MNIST, CIFAR-10 datasets. For the multi-robot collaboration tasks, we choose the object detection task on the PASCAL VOC dataset. The results demonstrate that the proposed adaptive Top-K algorithm in SGD achieves a significantly better convergence rate compared to state-of-the-art methods, even after considering error compensation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2024.3381373</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0008-0458-5751</orcidid><orcidid>https://orcid.org/0000-0003-2756-4984</orcidid><orcidid>https://orcid.org/0000-0002-5821-8569</orcidid><orcidid>https://orcid.org/0000-0001-9741-5912</orcidid><orcidid>https://orcid.org/0000-0002-0936-9467</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-4553 |
ispartof | IEEE journal of selected topics in signal processing, 2024-04, Vol.18 (3), p.487-501 |
issn | 1932-4553 1941-0484 |
language | eng |
recordid | cdi_proquest_journals_3100618450 |
source | IEEE Xplore (Online service) |
subjects | Adaptation models Adaptive algorithms Budgets Collaboration Communication communication-efficient Computer aided instruction Constraints Convergence Cooperation Cost analysis Datasets Distance learning Distributed learning Error analysis Error compensation gradient sparsification Image classification Image compression Image enhancement Learning multi-robot collaboration Multiple robots Object recognition Optimization Quantization (signal) Robots Training Upper bounds |
title | Adaptive Top-K in SGD for Communication-Efficient Distributed Learning in Multi-Robot Collaboration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Top-K%20in%20SGD%20for%20Communication-Efficient%20Distributed%20Learning%20in%20Multi-Robot%20Collaboration&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Ruan,%20Mengzhe&rft.date=2024-04-01&rft.volume=18&rft.issue=3&rft.spage=487&rft.epage=501&rft.pages=487-501&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2024.3381373&rft_dat=%3Cproquest_cross%3E3100618450%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c247t-d30d3e5344c271ea676759449b9f02eca679ba5924c31ed78b995de10a311b083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3100618450&rft_id=info:pmid/&rft_ieee_id=10493123&rfr_iscdi=true |